A063555 Smallest k such that 3^k has exactly n 0's in its decimal representation.
0, 10, 22, 21, 35, 57, 55, 54, 107, 137, 126, 170, 188, 159, 191, 225, 259, 297, 262, 253, 340, 296, 380, 369, 403, 395, 383, 407, 429, 514, 446, 486, 431, 545, 589, 510, 546, 542, 666, 733, 540, 621, 709, 715, 549, 694, 804, 820, 847, 865, 710
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..2000
Programs
-
Maple
N:= 100: # to get a(0)..a(N) A:= Array(0..N,-1): p:= 1: A[0]:= 0: count:= 1: for k from 1 while count <= N do p:= 3*p; m:= numboccur(0, convert(p,base,10)); if m <= N and A[m] < 0 then A[m]:= k; count:= count+1 fi od: seq(A[i],i=0..N); # Robert Israel, Dec 21 2016
-
Mathematica
a = {}; Do[k = 1; While[ Count[ IntegerDigits[3^k], 0] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a Module[{l3=Table[{n,DigitCount[3^n,10,0]},{n,900}]},Transpose[Table[ SelectFirst[ l3,#[[2]]==i&],{i,0,50}]][[1]]] (* Harvey P. Dale, Dec 08 2014 *)
-
PARI
A063555(n)=for(k=0,oo,#select(d->!d,digits(3^k))==n&&return(k)) \\ M. F. Hasler, Jun 14 2018
Extensions
a(0) corrected by Zak Seidov, Jun 14 2018