A063575 Smallest k such that 4^k has exactly n 0's in its decimal representation.
0, 5, 21, 35, 47, 44, 50, 51, 103, 99, 121, 125, 126, 175, 166, 131, 185, 153, 184, 223, 272, 232, 248, 336, 233, 306, 315, 384, 314, 327, 333, 373, 393, 399, 454, 457, 504, 453, 484, 506, 621, 494, 510, 639, 522, 557, 560, 559, 716, 609, 629
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000 (first 150 terms from Harry J. Smith; a(0) modified by M. F. Hasler).
Crossrefs
Programs
-
Mathematica
a = {}; Do[k = 0; While[ Count[ IntegerDigits[4^k], 0] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a Module[{nn=750,p4},p4=Table[{n,DigitCount[4^n,10,0]},{n,nn}];Transpose[ Table[ SelectFirst[p4,#[[2]]==i&],{i,0,50}]][[1]]] (* The program uses the SelectFirst function from Mathematica version 10 *) (* Harvey P. Dale, May 20 2016 *)
-
PARI
Count(x, d)= { local(c,f); c=0; while (x>9, f=x-10*(x\10); if (f==d, c++); x\=10); if (x==d, c++); return(c) } { for (n=0, 150, a=0; while (Count(4^a, 0) != n, a++); write("b063575.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 26 2009
-
PARI
A063575(n)=for(k=n,oo,#select(d->!d,digits(4^k))==n&&return(k)) \\ M. F. Hasler, Jun 14 2018