cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A079153 Primes p such that both p-1 and p+1 have at most 3 prime factors, counted with multiplicity; i.e., primes p such that bigomega(p-1) <= 3 and bigomega(p+1) <= 3, where bigomega(n) = A001222(n).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 19, 29, 43, 67, 173, 283, 317, 653, 787, 907, 1867, 2083, 2693, 2803, 3413, 3643, 3677, 4253, 4363, 4723, 5443, 5717, 6197, 6547, 6653, 8563, 8573, 9067, 9187, 9403, 9643, 10733, 11443, 11587, 12163, 12917, 13997, 14107, 14683, 15187
Offset: 1

Views

Author

Cino Hilliard, Dec 27 2002

Keywords

Comments

Sum of reciprocals ~ 1.495. There are 3528 primes of this kind <= 10^7.
From a(7) = 19 onward, this sequence is identical to A063644(n-6). - Robin Saunders, Sep 22 2014

Examples

			907 is in the sequence because both 907-1 = 2*3*151 and 907+1 = 2*2*227 have 3 prime factors.
		

Crossrefs

Intersection of A079150 and A079151. Cf. A079152.

Programs

  • Maple
    filter:= p -> isprime(p) and numtheory:-bigomega(p-1) <= 3 and numtheory:-bigomega(p+1) <= 3:
    select(filter, [2,seq(2*i+1, i=1..10^4)]); # Robert Israel, Nov 11 2014
  • Mathematica
    Select[Prime[Range[2000]],Max[PrimeOmega[#+{1,-1}]]<4&] (* Harvey P. Dale, Oct 07 2015 *)
  • PARI
    s(n) = {sr=0; ct=0; forprime(x=2,n, if(bigomega(x-1) < 4 && bigomega(x+1) < 4, print1(x" "); sr+=1.0/x; ct+=1; ); ); print(); print(ct" "sr); } \\ Lists primes p<=n such that both p-1 and p+1 have at most 3 prime factors.

A247088 Primes sandwiched between 10-almost primes (A046314).

Original entry on oeis.org

3885569, 5717249, 8411201, 9173249, 11039489, 13310081, 13506751, 13633759, 14616449, 15709951, 17482879, 21614849, 21988097, 24507521, 24714559, 26207551, 26720767, 28680319, 30546559, 31780351, 32995999, 33999103, 34602751, 38255489, 38531249, 38618369, 40408831, 44103041, 44278001
Offset: 1

Views

Author

Zak Seidov, Jan 10 2015

Keywords

Comments

Primes p such that p-1 and p+1 are 10-almost primes.

Examples

			3885569 - 1 = 2^9 * 7589;
3885569 + 1 = 2 * 3^6 * 5 * 13 * 41.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2678000]],PrimeOmega[#-1]==PrimeOmega[#+1]==10&] (* Harvey P. Dale, Jul 05 2019 *)
  • PARI
    is(n)=bigomega(n-1)==10 && bigomega(n+1)==10 && isprime(n) \\ Charles R Greathouse IV, Apr 27 2015

A247114 Primes sandwiched between 4-almost primes (A014613).

Original entry on oeis.org

89, 151, 197, 233, 307, 349, 461, 491, 569, 571, 739, 857, 859, 1013, 1061, 1097, 1277, 1291, 1303, 1483, 1667, 1747, 1831, 1913, 1973, 2003, 2131, 2357, 2503, 2531, 2621, 2683, 3011, 3067, 3163, 3209, 3229, 3259, 3271, 3581, 3797, 3929, 4013, 4027, 4073, 4219, 4327, 4597, 4793, 4877, 4903
Offset: 1

Views

Author

Zak Seidov, Jan 10 2015

Keywords

Comments

Primes p such that p - 1 and p + 1 are 4-almost primes.

Examples

			89 - 1 = 2^3*11, 89 + 1 = 2*3^2*5.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], 4 == PrimeOmega[# - 1] == PrimeOmega[# + 1] &]
  • PARI
    forprime(p= 1,5000, if(4==bigomega(p-1)&&4==bigomega(p+1), print1(p", ")))
    
  • PARI
    is(n)=bigomega(n-1)==4 && bigomega(n+1)==4 && isprime(n) \\ Charles R Greathouse IV, Apr 27 2015
Showing 1-3 of 3 results.