cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A063671 Positions of nonzero coefficients in cyclotomic polynomial Phi_n(x), A063670 in binary.

Original entry on oeis.org

10, 11, 11, 111, 101, 11111, 111, 1111111, 10001, 1001001, 11111, 11111111111, 10101, 1111111111111, 1111111, 110111011, 100000001, 11111111111111111, 1001001, 1111111111111111111, 101010101, 1101101011011, 11111111111
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Comments

a(0) could also be 1. - T. D. Noe, Oct 29 2007

Examples

			Phi_15(x) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1, thus the 1-bits of a(15) are at positions 0,1,3,4,5,7 and 8, thus we get a(15) = 110111011.
		

Crossrefs

Programs

  • Maple
    map(convert, A063670,binary);
  • Mathematica
    a[n_] := FromDigits[Abs[CoefficientList[Cyclotomic[n, x], x]]]; a[0]=10;Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Nov 02 2016 *)

Formula

a(n) = A063697(n) (the positive terms) + A063699(n) (the negative terms) (computed in any base, up to n=104).

A128997 indices k such that A063670(k) differs from A005420(k).

Original entry on oeis.org

11, 12, 15, 20, 21, 22, 23, 24, 25, 28, 29, 30, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96
Offset: 1

Views

Author

M. F. Hasler, Apr 30 2007

Keywords

Comments

Primes in this sequence are those for which A005420(n) < 2^n-1, i.e. 2^n-1 is not prime.

Crossrefs

Programs

A063696 Positions of positive coefficients in cyclotomic polynomial Phi_n(x), converted from binary to decimal.

Original entry on oeis.org

0, 2, 3, 7, 5, 31, 5, 127, 17, 73, 21, 2047, 17, 8191, 85, 297, 257, 131071, 65, 524287, 273, 4681, 1365, 8388607, 257, 1082401, 5461, 262657, 4369, 536870911, 387, 2147483647, 65537, 1198665, 87381, 17454241, 4097, 137438953471, 349525
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Comments

Maple procedures Phi_pos_terms and Phi_neg_terms are modeled after the formula given in Lam and Leung paper and they compute correct results for all integers x > 1 and for all n with at most two distinct odd prime factors (that is, up to n=104). Other procedures as in A063698 and A063694.

Crossrefs

Cf. A013594, A063697 (binary version), A063698 (negative terms), A063670 (nonzero terms).
A019320(n) = a(n) - A063698(n) for up to n=104.

Programs

  • Maple
    with(numtheory); [seq(Phi_pos_terms(j,2),j=0..104)];
    inv_p_mod_q := (p,q) -> op(2,op(1,msolve(p*x=1,q))); # Find's p's inverse modulo q.
    dilate := proc(nn,x,e) local n,i,s; n := nn; i := 0; s := 0; while(n > 0) do s := s + (((x^e)^i)*(n mod x)); n := floor(n/x); i := i+1; od; RETURN(s); end;
    Phi_pos_terms := proc(n,x) local a,m,p,q,e,f,r,s; if(n < 2) then RETURN(x); fi; a := op(2, ifactors(n)); m := nops(a); p := a[1][1]; e := a[1][2]; if(1 = m) then RETURN(((x^(p^e))-1)/((x^(p^(e-1)))-1)); fi; if(2 = m) then q := a[2][1]; f := a[2][2]; r := inv_p_mod_q(p,q)-1; s := inv_p_mod_q(q,p)-1; RETURN( (`if`(0=s,1,(((x^((s+1)*((q^f)*(p^(e-1)))))-1)/((x^((q^f)*(p^(e-1))))-1)))) * (`if`(0=r,1,(((x^((r+1)*((p^e)*(q^(f-1)))))-1)/((x^((p^e)*(q^(f-1))))-1)))) ); fi; if((3 = m) and (2 = p)) then if(1 = e) then RETURN(every_other_pos(Phi_pos_terms(n/2,x),x,0)+every_other_pos(Phi_neg_terms(n/2,x),x,1)); else RETURN(dilate(Phi_pos_terms((n/(2^(e-1))),x),x,2^(e-1))); fi; else printf(`Cannot handle argument %a with three or more distinct odd prime factors!\n`,n); RETURN(0); fi; end;
  • Mathematica
    a[n_] := 2^(Flatten[Position[CoefficientList[Cyclotomic[n, x], x], ?Positive]] - 1) // Total; a[0] = 0; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover, Mar 05 2016 *)
  • PARI
    a(n)=local(p); if(n<1,0,p=polcyclo(n); sum(i=0,n,2^i*(polcoeff(p,i)>0)))
Showing 1-3 of 3 results.