A063698 Positions of negative coefficients in cyclotomic polynomial Phi_n(x), converted from binary to decimal. (The constant term in the least significant bit (bit-0), the term x in the next bit (bit-1) and so on).
0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 10, 0, 4, 0, 42, 146, 0, 0, 8, 0, 68, 2322, 682, 0, 16, 0, 2730, 0, 1092, 0, 56, 0, 0, 599186, 43690, 8726850, 64, 0, 174762, 9585810, 4112, 0, 792, 0, 279620, 2101256, 2796202, 0, 256, 0, 32800, 2454267026, 4473924, 0, 512
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..3003
- D. M. Bloom, On the Coefficients of the Cyclotomic Polynomials, Amer.Math.Monthly 75, 372-377, 1968.
- T.Y. Lam and K. H. Leung, On the Cyclotomic Polynomial Phi_pq(X), Amer.Math.Monthly 103, 562-564, August-September 1996.
- H. Lenstra, Vanishing sums of roots of unity, in Proc. Bicentennial Congress Wiskundig Genootschap (Vrije Univ. Amsterdam, 1978), Part II, pp. 249-268.
- Index entries for cyclotomic polynomials, positions of coefficients
Crossrefs
Programs
-
Maple
with(numtheory); [seq(Phi_neg_terms(j,2),j=0..104)]; Phi_neg_terms := proc(n,x) local a,m,p,q,e,f,r,s; if(n < 2) then RETURN(n); fi; a := op(2, ifactors(n)); m := nops(a); p := a[1][1]; e := a[1][2]; if(1 = m) then RETURN(0); fi; if(2 = m) then q := a[2][1]; f := a[2][2]; r := inv_p_mod_q(p,q)-1; s := inv_p_mod_q(q,p)-1; RETURN( x^((s+1)*(q^f)*(p^(e-1))) * x^((r+1)*(p^e)*(q^(f-1))) * x^(-((p^e) * (q^f))) * (`if`((p-2)=s,1,(((x^((p-s-1)*((q^f)*(p^(e-1)))))-1)/((x^((q^f)*(p^(e-1))))-1)))) * (`if`((q-2)=r,1,(((x^((q-r-1)*((p^e)*(q^(f-1)))))-1)/((x^((p^e)*(q^(f-1))))-1)))) ); fi; if((3 = m) and (2 = p)) then if(1 = e) then RETURN(every_other_pos(Phi_neg_terms(n/2,x),x,0)+every_other_pos(Phi_pos_terms(n/2,x),x,1)); else RETURN(dilate(Phi_neg_terms((n/(2^(e-1))),x),x,2^(e-1))); fi; else printf(`Cannot handle argument %a with >=3 distinct odd prime factors!\n`,n); RETURN(0); fi; end;
-
Mathematica
a[n_] := 2^(Flatten[Position[CoefficientList[Cyclotomic[n, x], x], ?Negative]] - 1) // Total; a[0] = 0; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover, Mar 05 2016 *)
-
PARI
a(n)=my(p); if(n<1, 0, p=polcyclo(n); sum(i=0, n, 2^i*(polcoeff(p, i)<0))) \\ Michel Marcus, Mar 05 2016
Comments