A063708 Cyclotomic polynomials Phi_n at x=phi divided by sqrt(5) and ceiled up (where phi = tau = (sqrt(5)+1)/2).
1, 1, 2, 3, 2, 8, 1, 21, 4, 11, 3, 144, 3, 377, 6, 12, 22, 2584, 7, 6765, 16, 75, 35, 46368, 19, 7436, 90, 2619, 105, 832040, 26, 2178309, 988, 3400, 611, 20161, 137, 39088169, 1598, 23229, 862, 267914296, 183, 701408733, 4896, 35921, 10947, 4807526976
Offset: 0
Keywords
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
Programs
-
Maple
with(numtheory); Phi_at_x := (n,y) -> subs(x=y,cyclotomic(n,x)); [seq(ceil(evalf(simplify(Phi_at_x(j,(sqrt(5)+1)/2))/(sqrt(5)))),j=0..120)];
-
Mathematica
Ceiling[Simplify[Cyclotomic[Range[0, 50], GoldenRatio]]/Sqrt[5]] (* Paolo Xausa, Feb 27 2024 *)