cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A358978 Numbers that are coprime to the number of terms in their Zeckendorf representation (A007895).

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 9, 11, 13, 15, 17, 19, 20, 21, 23, 25, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 47, 49, 50, 51, 52, 53, 55, 57, 59, 61, 62, 63, 64, 65, 67, 70, 71, 73, 75, 77, 79, 83, 85, 87, 88, 89, 91, 95, 97, 98, 100, 101, 103, 104, 107, 109
Offset: 1

Views

Author

Amiram Eldar, Dec 07 2022

Keywords

Comments

First differs from A063743 at n = 22.
Numbers k such that gcd(k, A007895(k)) = 1.
The Fibonacci numbers (A000045) are terms. These are also the only Zeckendorf-Niven numbers (A328208) in this sequence.
Includes all the prime numbers.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 7, 61, 614, 6028, 61226, 606367, 6041106, 61235023, 612542436, 6034626175, 60093287082, 609082612171, ... . Conjecture: The asymptotic density of this sequence exists and equals 6/Pi^2 = 0.607927... (A059956), the same as the density of A094387.

Examples

			3 is a term since A007895(3) = 1, and gcd(3, 1) = 1.
		

Crossrefs

Subsequences: A000040, A000045.
Similar sequences: A094387, A339076, A358975, A358976, A358977.

Programs

  • Mathematica
    z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; Select[Range[120], CoprimeQ[#, z[#]] &] (* after Alonso del Arte at A007895 *)
  • PARI
    is(n) = if(n<4, 1, my(k=2, m=n, s, t); while(fibonacci(k++)<=m, ); while(k && m, t=fibonacci(k); if(t<=m, m-=t; s++); k--); gcd(n, s)==1); \\ after Charles R Greathouse IV at A007895

A275616 Numbers n such that n and omega(n) are relatively prime, where omega(n) (A001221) is the number of distinct prime divisors of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 65, 67, 69, 70, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 110, 111, 113, 115, 117, 119, 121, 123, 125, 127, 128, 129, 130, 131, 133, 135
Offset: 1

Views

Author

Keywords

Comments

Alladi shows that the density of A063743 is 6/Pi^2, and mentions (p. 229) that a slight modification of the proof shows that the density of this sequence is the same, hence a(n) ~ (Pi^2/6)n.
Vol'kovič (1976) proved that the asymptotic density of this sequence is 6/Pi^2. - Amiram Eldar, Jul 10 2020

References

  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter V, p. 174.
  • V. E. Vol'kovič, Numbers that are relatively prime to their number of prime divisors (in Russian), Izv. Akad. Nauk USSR Ser. Fiz.-Math. Nauk, Vol. 86, No. 4 (1976), pp. 3-7.

Crossrefs

Programs

  • Mathematica
    Select[Range[200],CoprimeQ[#,PrimeNu[#]]&] (* Harvey P. Dale, Dec 20 2021 *)
  • PARI
    is(n)=gcd(omega(n),n)==1
Showing 1-2 of 2 results.