cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A063740 Number of integers k such that cototient(k) = n.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 3, 2, 0, 2, 3, 2, 1, 2, 3, 3, 1, 3, 1, 3, 1, 4, 4, 3, 0, 4, 1, 4, 3, 3, 4, 3, 0, 5, 2, 2, 1, 4, 1, 5, 1, 4, 2, 4, 2, 6, 5, 5, 0, 3, 0, 6, 2, 4, 2, 5, 0, 7, 4, 3, 1, 8, 4, 6, 1, 3, 1, 5, 2, 7, 3, 5, 1, 7, 1, 8, 1, 5, 2, 6, 1, 9, 2, 6, 0, 4, 2, 10, 2, 4, 2, 5, 2, 7, 5, 4, 1, 8, 0, 9, 1, 6, 1, 7
Offset: 2

Views

Author

Labos Elemer, Aug 13 2001

Keywords

Comments

Note that a(0) is also well-defined to be 1 because the only solution to x - phi(x) = 0 is x = 1. - Jianing Song, Dec 25 2018

Examples

			Cototient(x) = 101 for x in {485, 1157, 1577, 1817, 2117, 2201, 2501, 2537, 10201}, with a(101) = 8 terms; e.g. 485 - phi(485) = 485 - 384 = 101. Cototient(x) = 102 only for x = 202 so a(102) = 1.
		

Crossrefs

Cf. A063748 (greatest solution to x-phi(x)=n).

Programs

  • Mathematica
    Table[Count[Range[n^2], k_ /; k - EulerPhi@ k == n], {n, 2, 105}] (* Michael De Vlieger, Mar 17 2017 *)
  • PARI
    first(n)=my(v=vector(n),t); forcomposite(k=4,n^2, t=k-eulerphi(k); if(t<=n, v[t]++)); v[2..n] \\ Charles R Greathouse IV, Mar 17 2017

Formula

From Amiram Eldar, Apr 08 2023 (Start)
a(A005278(n)) = 0.
a(A131825(n)) = 1.
a(A063741(n)) = n. (End)

Extensions

Name edited by Charles R Greathouse IV, Mar 17 2017

A063507 Least k such that k - phi(k) = n, or 0 if no such k exists.

Original entry on oeis.org

2, 4, 9, 6, 25, 10, 15, 12, 21, 0, 35, 18, 33, 26, 39, 24, 65, 34, 51, 38, 45, 30, 95, 36, 69, 0, 63, 52, 161, 42, 87, 48, 93, 0, 75, 54, 217, 74, 99, 76, 185, 82, 123, 60, 117, 66, 215, 72, 141, 0, 235, 0, 329, 78, 159, 98, 105, 0, 371, 84, 177, 122, 135, 96, 305, 90, 427
Offset: 1

Views

Author

Labos Elemer, Aug 09 2001

Keywords

Comments

Inverse cototient (A051953) sets represented by their minimum, as in A002181 for totient function. Impossible values (A005278) are replaced by zero.
If a(n) > 0, then it appears that a(n) > 1.26n. - T. D. Noe, Dec 06 2006

Examples

			x = InvCototient[24] = {36, 40, 44, 46}; Phi[x] = Phi[{36, 40, 44, 46}] = {12, 16, 20, 22}; x-Phi[x] = {24, 24, 24, 24}, so a(24) = Min[InvCototient[24]]; a(10) = 0 because 10 is in A005278.
		

Crossrefs

Cf. A063748 (greatest solution to x-phi(x)=n).
Cf. A063740 (number of k such that cototient(k) = n).

Programs

  • Mathematica
    Table[SelectFirst[Range[n^2 + 1], # - EulerPhi[#] == n &] /. k_ /; ! IntegerQ@ k -> 0, {n, 67}] (* Michael De Vlieger, Jan 11 2018 *)

Formula

a(n)-A051953(a(n)) = n if possible and a(n)=0 if n belongs to A005278.

Extensions

Edited by N. J. A. Sloane, Oct 25 2008 at the suggestion of R. J. Mathar

A362213 Irregular table read by rows in which the n-th row consists of all the numbers m such that cototient(m) = n, where cototient is A051953.

Original entry on oeis.org

4, 9, 6, 8, 25, 10, 15, 49, 12, 14, 16, 21, 27, 35, 121, 18, 20, 22, 33, 169, 26, 39, 55, 24, 28, 32, 65, 77, 289, 34, 51, 91, 361, 38, 45, 57, 85, 30, 95, 119, 143, 529, 36, 40, 44, 46, 69, 125, 133, 63, 81, 115, 187, 52, 161, 209, 221, 841, 42, 50, 58, 87, 247, 961
Offset: 2

Views

Author

Amiram Eldar, Apr 11 2023

Keywords

Comments

The offset is 2 since cototient(p) = 1 for all primes p.
The 0th row consists of one term, 1, since 1 is the only solution to cototient(x) = 0.

Examples

			The table begins:
  n   n-th row
  --  -----------
   2  4;
   3  9;
   4  6, 8;
   5  25;
   6  10;
   7  15, 49;
   8  12, 14, 16;
   9  21, 27;
  10
  11  35, 121;
  12  18, 20, 22;
		

Crossrefs

Programs

  • Mathematica
    With[{max = 50}, cot = Table[n - EulerPhi[n], {n, 1, max^2}]; row[n_] := Position[cot, n] // Flatten; Table[row[n], {n, 2, max}] // Flatten]
Showing 1-3 of 3 results.