A016097 Erroneous version of A063507.
1, 4, 9, 6, 25, 10, 15, 12, 21, 0, 35, 18, 33, 26, 39, 24, 65, 34, 51, 38, 45, 30, 95, 36
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Cototient(x) = 101 for x in {485, 1157, 1577, 1817, 2117, 2201, 2501, 2537, 10201}, with a(101) = 8 terms; e.g. 485 - phi(485) = 485 - 384 = 101. Cototient(x) = 102 only for x = 202 so a(102) = 1.
Table[Count[Range[n^2], k_ /; k - EulerPhi@ k == n], {n, 2, 105}] (* Michael De Vlieger, Mar 17 2017 *)
first(n)=my(v=vector(n),t); forcomposite(k=4,n^2, t=k-eulerphi(k); if(t<=n, v[t]++)); v[2..n] \\ Charles R Greathouse IV, Mar 17 2017
For n = 1, 2, 3, 4, 5, ..., the corresponding inverse sets are as follows: {}, {4}, {6, 8}, {12, 14, 16}, {95, 119, 143, 529}, {75, 155, 203, 299, 323}, ..., {455, 815, 1727, 2567, 2831, 4031, 4247, 4847, 5207, 6431, 6527, 6767, 6887, 7031, 27889}, including 0, 1, 2, 3, 4, 5, ..., 15 numbers.
With[{s = Array[Count[Range[#^2], k_ /; k - EulerPhi@ k == #] &, 300, 2]}, ReplacePart[TakeWhile[First@ FirstPosition[s, #] + 1 & /@ Range[0, Max@ s], IntegerQ], 2 -> 0]] (* Michael De Vlieger, Jan 11 2018 *)
For n=15, the solutions are x=39 and x=55, so a(15)=55. Note that 55=5*11 and 5+11=n+1.
nn=10^4; lim=Floor[Sqrt[nn]]; mx=Table[0,{lim}]; Do[c=n-EulerPhi[n]; If[0T. D. Noe *) Table[Module[{k = n^2}, While[And[k - EulerPhi@ k != n, k > 0], k--]; k], {n, 2, 62}] (* Michael De Vlieger, Mar 17 2017 *)
ucototient[n_] := n - Times @@ (Power @@@ FactorInteger[n] - 1); ucototient[1] = 0; With[{max = 300}, solnum = Table[0, {n, 1, max}]; Do[If[(i = ucototient[k]) <= max, solnum[[i]]++], {k, 2, max^2}]; Join[{2, 0}, TakeWhile[FirstPosition[ solnum, #] & /@ Range[2, max] // Flatten, NumberQ]]]
The table begins: n n-th row -- ----------- 2 4; 3 9; 4 6, 8; 5 25; 6 10; 7 15, 49; 8 12, 14, 16; 9 21, 27; 10 11 35, 121; 12 18, 20, 22;
With[{max = 50}, cot = Table[n - EulerPhi[n], {n, 1, max^2}]; row[n_] := Position[cot, n] // Flatten; Table[row[n], {n, 2, max}] // Flatten]
The 31st term is 255 since 255 - phi(255) = 127, the 31st prime, and no number less than 255 has this property.
With[{c=Table[n-EulerPhi[n],{n,4000}]},Table[Position[c,p,1,1],{p,Prime[ Range[ 60]]}]]//Flatten (* Harvey P. Dale, Sep 14 2020 *)
a(n) = {my(k = 1); while(k - eulerphi(k) != prime(n), k++); k;} \\ Michel Marcus, Feb 02 2015
solnum[n_] := Length[invIPhi[n]]; seq[len_, kmax_] := Module[{s = Table[-1, {len}], c = 0, k = 1, ind}, While[k < kmax && c < len, ind = solnum[k]/2 + 1; If[ind <= len && s[[ind]] < 0, c++; s[[ind]] = k]; k++]; s]; seq[50, 10^5] (* using the function invIPhi from A362484 *)
Comments