A063754 Dirichlet convolution of totient and cototient.
0, 1, 1, 3, 1, 7, 1, 8, 5, 11, 1, 20, 1, 15, 13, 20, 1, 31, 1, 32, 17, 23, 1, 52, 9, 27, 21, 44, 1, 71, 1, 48, 25, 35, 21, 88, 1, 39, 29, 84, 1, 99, 1, 68, 61, 47, 1, 128, 13, 83, 37, 80, 1, 123, 29, 116, 41, 59, 1, 200, 1, 63, 81, 112, 33, 155, 1, 104, 49, 159, 1, 228, 1, 75, 101
Offset: 1
Examples
n = 24: divisors = {1, 2, 3, 4, 6, 8, 12, 24}, d-phi(d) = {0, 1, 1, 2, 4, 4, 8, 16}, phi(n/d) = {8, 4, 4, 2, 2, 2, 1, 1}, products = {0, 4, 4, 4, 8, 8, 8, 16}, a(24) = 52.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= n -> add(numtheory:-phi(d)*(n/d - numtheory:-phi(n/d)), d=numtheory:-divisors(n)): map(f, [$1..100]); # Robert Israel, Feb 04 2018
-
Mathematica
f1[p_, e_] := (e*(p - 1)/p + 1)*p^e; f2[p_, e_] := (e+1)*(p^e - p^(e-1)) - (e-1)*(p^(e-1) - p^(e-2)); a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; a[1] = 0; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
-
PARI
a(n) = sumdiv(n, d, eulerphi(d)*(n/d - eulerphi(n/d))); \\ Michel Marcus, Feb 05 2018
Formula
From Richard L. Ollerton, May 06 2021: (Start)
a(n) = Sum_{k=1..n} A051953(gcd(n,k)).
Sum_{k=1..n} a(k) ~ (1/(2*zeta(2)))*(1 - 1/zeta(2)) * n^2 * (log(n) + 2*gamma - 1/2 - ((zeta(2)-2)/(zeta(2)-1))*(zeta'(2)/zeta(2))), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 11 2024
Extensions
Offset corrected by Robert Israel, Feb 04 2018
Comments