A063769 Aspiring numbers: numbers whose aliquot sequence terminates in a perfect number.
25, 95, 119, 143, 417, 445, 565, 608, 650, 652, 675, 685, 783, 790, 909, 913
Offset: 1
Examples
The divisors of 95 less than itself are 1, 5 and 19. They sum to 25. The divisors of 25 less than itself are 1 and 5. They sum to 6, which is perfect.
References
- No number terminates at 28, the second perfect number.
Links
- Eric Weisstein's World of Mathematics, Aspiring Number
Programs
-
Mathematica
perfectQ[n_] := DivisorSigma[1, n] == 2*n; maxAliquot = 10^45; A131884 = {}; s[1] = 1; s[n_] := DivisorSigma[1, n] - n; selQ[n_ /; n <= 5] = False; selQ[n_] := NestWhile[s, n, If[{##}[[-1]] > maxAliquot, Print["A131884: ", n]; AppendTo[A131884, n]; False, Length[{##}] < 4 || {##}[[-4 ;; -3]] != {##}[[-2 ;; -1]]] &, All] // perfectQ; Reap[For[k = 1, k < 1000, k++, If[! perfectQ[k] && selQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Nov 15 2013 *)
Extensions
a(13)-a(16) from Robert Price, Jun 03 2013
Comments