cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063769 Aspiring numbers: numbers whose aliquot sequence terminates in a perfect number.

Original entry on oeis.org

25, 95, 119, 143, 417, 445, 565, 608, 650, 652, 675, 685, 783, 790, 909, 913
Offset: 1

Views

Author

Tanya Khovanova and Alexey Radul, Aug 14 2001

Keywords

Comments

There are many numbers whose aliquot sequences have not yet been completely computed, so this sequence is not fully known. In particular, 276 may, perhaps, be an element of this sequence, although this is very unlikely.
Numbers less than 1000 whose aliquot sequence is not known that could possibly be in this sequence are: 276, 306, 396, 552, 564, 660, 696, 780, 828, 888, 966, 996. - Robert Price, Jun 03 2013

Examples

			The divisors of 95 less than itself are 1, 5 and 19. They sum to 25. The divisors of 25 less than itself are 1 and 5. They sum to 6, which is perfect.
		

References

  • No number terminates at 28, the second perfect number.

Crossrefs

Programs

  • Mathematica
    perfectQ[n_] := DivisorSigma[1, n] == 2*n; maxAliquot = 10^45; A131884 = {}; s[1] = 1; s[n_] := DivisorSigma[1, n] - n; selQ[n_ /; n <= 5] = False; selQ[n_] := NestWhile[s, n, If[{##}[[-1]] > maxAliquot, Print["A131884: ", n]; AppendTo[A131884, n]; False, Length[{##}] < 4 || {##}[[-4 ;; -3]] != {##}[[-2 ;; -1]]] &, All] // perfectQ; Reap[For[k = 1, k < 1000, k++, If[! perfectQ[k] && selQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Nov 15 2013 *)

Extensions

a(13)-a(16) from Robert Price, Jun 03 2013