cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A226280 The perfect numbers produced by the aspiring numbers (A063769).

Original entry on oeis.org

6, 6, 6, 6, 6, 6, 6, 496, 496, 496, 6, 6, 6, 496, 6, 6
Offset: 1

Views

Author

Robert Price, Jun 03 2013

Keywords

Examples

			The aspiring number 25, whose aliquot sequence (25 -> 6) terminates in 6, which is a perfect number.
		

Crossrefs

Cf. A000396 (perfect numbers), A063769 (aspiring numbers).

A080907 Numbers whose aliquot sequence terminates in a 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 1

Views

Author

Gabriel Cunningham (gcasey(AT)mit.edu), Mar 31 2003

Keywords

Comments

All primes are in this set because s(p) = 1 for p prime. Perfect numbers are clearly not in this set. Neither are aspiring numbers (A063769), or numbers whose aliquot sequence is a cycle (such as 220 and 284).
There are some numbers whose aliquot sequences haven't been fully determined (such as 276).

Examples

			4 is in this set because its aliquot chain is 4->3->1. 6 is not in this set because it is perfect. 25 is not in this set because its aliquot chain is 25->6.
		

Crossrefs

Complement of A126016.

Programs

  • Mathematica
    maxAliquot = 10^50; A131884 = {}; s[1] = 1; s[n_] := DivisorSigma[1, n] - n; selQ[n_ /; n <= 5] = True; selQ[n_] := NestWhile[s, n, If[{##}[[-1]] > maxAliquot, Print["A131884: ", n]; AppendTo[A131884, n]; False, Length[{##}] < 4 || {##}[[-4 ;; -3]] != {##}[[-2 ;; -1]]] & , All] == 1; Select[Range[1, 1100], selQ] (* Jean-François Alcover, Nov 14 2013, updated Sep 10 2015 *)

Formula

n is a member if n = 1 or s(n) is a member, where s(n) is the sum of the proper factors of n.

Extensions

Edited by N. J. A. Sloane, Aug 14 2006
More terms from Franklin T. Adams-Watters, Dec 14 2006
The fact that 840 was missing from the sequence b-file was pointed out by Philip Turecek, Sep 10 2015

A115350 Termination of the aliquot sequence starting at n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 7, 3, 7, 11, 3, 13, 7, 3, 3, 17, 11, 19, 7, 11, 7, 23, 17, 6, 3, 13, 28, 29, 3, 31, 31, 3, 7, 13, 17, 37, 7, 17, 43, 41, 3, 43, 43, 3, 3, 47, 41, 7, 43, 11, 3, 53, 3, 17, 41, 23, 31, 59, 43, 61, 7, 41, 41, 19, 3, 67, 31, 13, 43, 71, 3, 73, 43, 7, 41, 19, 3, 79, 41, 43, 43
Offset: 1

Views

Author

Sergio Pimentel, Mar 07 2006

Keywords

Comments

Catalan's conjecture [not yet established and probably false] is that every aliquot sequence terminates in a prime number followed by 1, a perfect number, a friendly pair or an aliquot cycle.
a(n) = the prime number if the sequence terminates in a prime followed by 1, a(n) = a perfect number if the sequence terminates in a perfect number, a(n) = the smallest number of the cycle if the sequence terminates in an aliquot cycle, a(n) = 0 if the sequence is open ended. So far 276 is the smallest number for which the termination of the aliquot sequence is not known.

Examples

			a(12)=3 since the aliquot sequence starting at 12 is: 12 - 16 - 15 - 9 - 4 - 3.
a(95)=6 since the aliquot sequence starting at 95 is: 95 - 25 - 6 - 6 ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, FixedPointList[If[# > 0, DivisorSigma[1, #] - #, 0]&, n] /. {k__, 1, 0, 0} :> {k} // Last];
    Array[a, 100] (* Jean-François Alcover, Mar 28 2020 *)

Extensions

Edited by N. J. A. Sloane, Aug 14 2006
a(61)-a(80) from R. J. Mathar's list by Robert Price, Mar 16 2019

A121507 Conjectured list of numbers whose aliquot sequence eventually reaches a cycle of length two or more.

Original entry on oeis.org

220, 284, 562, 1064, 1184, 1188, 1210, 1308, 1336, 1380, 1420, 1490, 1604, 1690, 1692, 1772, 1816, 1898, 2008, 2122, 2152, 2172, 2362, 2542, 2620, 2630, 2652, 2676, 2678, 2856, 2924, 2930, 2950, 2974, 3124, 3162, 3202, 3278, 3286, 3332, 3350, 3360
Offset: 1

Views

Author

Joshua Zucker, Aug 04 2006

Keywords

Comments

For some numbers the outcome of the aliquot sequence is unknown. Currently, 276 is the least such.

Crossrefs

Extensions

Edited by Don Reble, Aug 15 2006

A115060 Maximum peak of aliquot sequence starting at n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 13, 14, 15, 16, 17, 21, 19, 22, 21, 22, 23, 55, 25, 26, 27, 28, 29, 259, 31, 32, 33, 34, 35, 55, 37, 38, 39, 50, 41, 259, 43, 50, 45, 46, 47, 76, 49, 50, 51, 52, 53, 259, 55, 64, 57, 58, 59, 172, 61, 62, 63, 64, 65, 259
Offset: 1

Views

Author

Sergio Pimentel, Mar 06 2006

Keywords

Comments

According to Catalan's conjecture all aliquot sequences end in a prime followed by 1, a perfect number, a friendly pair or an aliquot cycle. Some sequences seem to be open ended and keep growing forever i.e. 276. Most sequences only go down (i.e. 10 - 8 - 7 - 1), so for most cases in this sequence, a(n) = n. The first number to achieve a significantly high peak is 138

Examples

			a(24)=55 because the aliquot sequence starting at 24 is: 24 - 36 - 55 - 17 - 1 so the maximum peak of this sequence is 55.
		

Crossrefs

Programs

  • Python
    from sympy import divisor_sigma as sigma
    def aliquot(n):
        alst = []; seen = set(); i = n
        while i and i not in seen: alst.append(i); seen.add(i); i = sigma(i) - i
        return alst
    def aupton(terms): return [max(aliquot(n)) for n in range(1, terms+1)]
    print(aupton(66)) # Michael S. Branicky, Jul 11 2021

Extensions

More terms from Jinyuan Wang, Jul 11 2021

A126016 Numbers whose aliquot sequence does not terminate in 1.

Original entry on oeis.org

6, 25, 28, 95, 119, 143, 220
Offset: 1

Views

Author

Keywords

Comments

Sequence continues 276?, 284, 306?, 396?, 417, 445, 496, .... Because 276, 306 and 396 are all in the same family, either all 3 are present or none are. It is not known whether any aliquot sequence grows without bound; 276 is the smallest number for which this is unknown.
Additional tentative terms: 552, 562, 564, 565, 608, 650, 652, 660, 675, 685, 696, 780, 783, 790, 828, 840, 888, 909, 913, 966, 996, 1064, 1074, 1086, 1098, ... - Jean-François Alcover, Nov 14 2013
For additional terms, if the Goldbach Conjecture is assumed, take any odd term, subtract 1, and find two distinct primes that sum to it. For some numbers there will not be any pair of distinct primes. Multiply the two primes and the product is an element of the sequence. Note that this process does not work if the term - 1 is power of a prime. - Nathaniel J. Strout, Nov 25 2018

Crossrefs

Complement of A080907. Includes A000396, A063990 and other sociable numbers, A063769, numbers whose aliquot sequence reaches a sociable number and numbers whose aliquot sequence grows without bound.

Programs

  • Mathematica
    maxAliquot = 10^45; A131884 = {}; s[1] = 1; s[n_] := DivisorSigma[1, n] - n; selQ[n_ /; n <= 5] = True; selQ[n_] := NestWhile[s, n, If[{##}[[-1]] > maxAliquot, Print["A131884: ", n]; AppendTo[A131884, n]; False, Length[{##}] < 4 || {##}[[-4 ;; -3]] != {##}[[-2 ;; -1]]] & , All] == 1; Reap[For[k = 1, k < 1100, k++, If[!selQ[k], Print[k]; Sow[k]]]][[2, 1]]

A127163 Integers whose aliquot sequences terminate by encountering the prime 3. Also known as the prime family 3.

Original entry on oeis.org

3, 4, 9, 12, 15, 16, 26, 30, 33, 42, 45, 46, 52, 54, 66, 72, 78, 86, 87, 90, 102, 105, 114, 121, 123, 126, 135, 144, 165, 166, 174, 186, 198, 207, 212, 243, 246, 247, 249, 258, 259, 270
Offset: 1

Views

Author

Ant King, Jan 07 2007

Keywords

Comments

This sequence is complete only as far as the last term given, for the eventual fate of the aliquot sequence generated by 276 is not (yet) known

Examples

			a(5)=15 because the fifth integer whose aliquot sequence terminates by encountering the prime 3 as a member of its trajectory is 15. The complete aliquot sequence generated by iterating the proper divisors of 15 is 15->9->4->3->1->0
		

References

  • Benito, Manuel; Creyaufmueller, Wolfgang; Varona, Juan Luis; and Zimmermann, Paul; Aliquot Sequence 3630 Ends After Reaching 100 Digits; Experimental Mathematics, Vol. 11, No. 2, Natick, MA, 2002, pp. 201-206.

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSigma[1, n] - n; g[n_] := If[n > 0, s[n], 0]; Trajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; Select[Range[275], MemberQ[Trajectory[ # ], 3] &]

Formula

Define s(i)=sigma(i)-i=A000203(i)-i. Then if the aliquot sequence obtained by repeatedly applying the mapping i->s(i) terminates by encountering the prime 3 as a member of its trajectory, i is included in this sequence

A127164 Integers whose aliquot sequences terminate by encountering the prime 7. Also known as the prime family 7.

Original entry on oeis.org

7, 8, 10, 14, 20, 22, 34, 38, 49, 62, 75, 118, 148, 152, 169, 188, 213, 215
Offset: 1

Views

Author

Ant King, Jan 07 2007

Keywords

Comments

This sequence is complete only as far as the last term given, for the eventual fate of the aliquot sequence generated by 276 is not (yet) known.

Examples

			a(5)=20 because the fifth integer whose aliquot sequence terminates by encountering the prime 7 as a member of its trajectory is 20. The complete aliquot sequence generated by iterating the proper divisors of 15 is 20->22->14->10->8->7->1->0
		

References

  • Benito, Manuel; Creyaufmueller, Wolfgang; Varona, Juan Luis; and Zimmermann, Paul; Aliquot Sequence 3630 Ends After Reaching 100 Digits; Experimental Mathematics, Vol. 11, No. 2, Natick, MA, 2002, pp. 201-206.

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSigma[1, n] - n; g[n_] := If[n > 0, s[n], 0]; Trajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; Select[Range[275], MemberQ[Trajectory[ # ], 7] &]

Formula

Define s(i)=sigma(i)-i=A000203(i)-i. Then if the aliquot sequence obtained by repeatedly applying the mapping i->s(i) terminates by encountering the prime 7 as a member of its trajectory, i is included in this sequence.

A127161 Integers whose aliquot sequences terminate by encountering a prime number.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 1

Views

Author

Ant King, Jan 06 2007

Keywords

Comments

This sequence is the same as A080907 from A080907's second term onwards.

Examples

			a(10)=12 because the tenth integer whose aliquot sequence terminates by encountering a prime as a member of its trajectory is 12. The complete aliquot sequence generated by iterating the proper divisors of 12 is 12->16->15->9->4->3->1->0
		

References

  • Benito, Manuel; Creyaufmueller, Wolfgang; Varona, Juan Luis; and Zimmermann, Paul; Aliquot Sequence 3630 Ends After Reaching 100 Digits; Experimental Mathematics, Vol. 11, No. 2, Natick, MA, 2002, pp. 201-206.

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSigma[1, n] - n; g[n_] := If[n > 0, s[n], 0]; Trajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; Select[Range[2, 275], Last[Trajectory[ # ]] == 0 &]

Formula

Define s(i)=sigma(i)-i=A000203(i)-i. Then if the aliquot sequence obtained by repeatedly iterating s contains a prime as a member of its trajectory, i is included in this sequence

A127162 Composite numbers whose aliquot sequences terminate by encountering a prime number.

Original entry on oeis.org

4, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99
Offset: 1

Views

Author

Ant King, Jan 06 2007

Keywords

Examples

			a(5)=12 because the fifth composite number whose aliquot sequence terminates by encountering a prime as a member of its trajectory is 12. The complete aliquot sequence generated by iterating the proper divisors of 12 is 12->16->15->9->4->3->1->0
		

References

  • Benito, Manuel; Creyaufmueller, Wolfgang; Varona, Juan Luis; and Zimmermann, Paul; Aliquot Sequence 3630 Ends After Reaching 100 Digits; Experimental Mathematics, Vol. 11, No. 2, Natick, MA, 2002, pp. 201-206.

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSigma[1, n] - n; g[n_] := If[n > 0, s[n], 0]; Trajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; Select[Range[2, 275], ! PrimeQ[ # ] && Last[Trajectory[ # ]] == 0 &]

Formula

Define s(i)=sigma(i)-i=A000203(i)-i. Then if i is composite and the aliquot sequence obtained by repeatedly applying the mapping i->s(i) contains a prime as a member of its trajectory, i is included in this sequence.
Showing 1-10 of 16 results. Next