cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A125601 a(n) is the smallest k > 0 such that there are exactly n numbers whose sum of proper divisors is k.

Original entry on oeis.org

2, 3, 6, 21, 37, 31, 49, 79, 73, 91, 115, 127, 151, 121, 181, 169, 217, 265, 253, 271, 211, 301, 433, 379, 331, 361, 457, 391, 451, 655, 463, 541, 421, 775, 511, 769, 673, 715, 865, 691, 1015, 631, 1069, 1075, 721, 931, 781, 1123, 871, 925, 901, 1177, 991, 1297
Offset: 0

Views

Author

Klaus Brockhaus, Nov 27 2006

Keywords

Comments

Minimal values for nodes of exact degree in aliquot sequences. Find each node's degree (number of predecessors) in aliquot sequences and choose the smallest value as the sequence member. - Ophir Spector, ospectoro (AT) yahoo.com Nov 25 2007

Examples

			a(4) = 37 since there are exactly four numbers (155, 203, 299, 323) whose sum of proper divisors is 37. For k < 37 there are either fewer or more numbers (32, 125, 161, 209, 221 for k = 31) whose sum of proper divisors is k.
		

Crossrefs

Programs

  • PARI
    {m=54;z=1500;y=600000;v=vector(z);for(n=2,y,s=sigma(n)-n; if(s
    				

A127163 Integers whose aliquot sequences terminate by encountering the prime 3. Also known as the prime family 3.

Original entry on oeis.org

3, 4, 9, 12, 15, 16, 26, 30, 33, 42, 45, 46, 52, 54, 66, 72, 78, 86, 87, 90, 102, 105, 114, 121, 123, 126, 135, 144, 165, 166, 174, 186, 198, 207, 212, 243, 246, 247, 249, 258, 259, 270
Offset: 1

Views

Author

Ant King, Jan 07 2007

Keywords

Comments

This sequence is complete only as far as the last term given, for the eventual fate of the aliquot sequence generated by 276 is not (yet) known

Examples

			a(5)=15 because the fifth integer whose aliquot sequence terminates by encountering the prime 3 as a member of its trajectory is 15. The complete aliquot sequence generated by iterating the proper divisors of 15 is 15->9->4->3->1->0
		

References

  • Benito, Manuel; Creyaufmueller, Wolfgang; Varona, Juan Luis; and Zimmermann, Paul; Aliquot Sequence 3630 Ends After Reaching 100 Digits; Experimental Mathematics, Vol. 11, No. 2, Natick, MA, 2002, pp. 201-206.

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSigma[1, n] - n; g[n_] := If[n > 0, s[n], 0]; Trajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; Select[Range[275], MemberQ[Trajectory[ # ], 3] &]

Formula

Define s(i)=sigma(i)-i=A000203(i)-i. Then if the aliquot sequence obtained by repeatedly applying the mapping i->s(i) terminates by encountering the prime 3 as a member of its trajectory, i is included in this sequence

A127164 Integers whose aliquot sequences terminate by encountering the prime 7. Also known as the prime family 7.

Original entry on oeis.org

7, 8, 10, 14, 20, 22, 34, 38, 49, 62, 75, 118, 148, 152, 169, 188, 213, 215
Offset: 1

Views

Author

Ant King, Jan 07 2007

Keywords

Comments

This sequence is complete only as far as the last term given, for the eventual fate of the aliquot sequence generated by 276 is not (yet) known.

Examples

			a(5)=20 because the fifth integer whose aliquot sequence terminates by encountering the prime 7 as a member of its trajectory is 20. The complete aliquot sequence generated by iterating the proper divisors of 15 is 20->22->14->10->8->7->1->0
		

References

  • Benito, Manuel; Creyaufmueller, Wolfgang; Varona, Juan Luis; and Zimmermann, Paul; Aliquot Sequence 3630 Ends After Reaching 100 Digits; Experimental Mathematics, Vol. 11, No. 2, Natick, MA, 2002, pp. 201-206.

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSigma[1, n] - n; g[n_] := If[n > 0, s[n], 0]; Trajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; Select[Range[275], MemberQ[Trajectory[ # ], 7] &]

Formula

Define s(i)=sigma(i)-i=A000203(i)-i. Then if the aliquot sequence obtained by repeatedly applying the mapping i->s(i) terminates by encountering the prime 7 as a member of its trajectory, i is included in this sequence.

A127161 Integers whose aliquot sequences terminate by encountering a prime number.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 1

Views

Author

Ant King, Jan 06 2007

Keywords

Comments

This sequence is the same as A080907 from A080907's second term onwards.

Examples

			a(10)=12 because the tenth integer whose aliquot sequence terminates by encountering a prime as a member of its trajectory is 12. The complete aliquot sequence generated by iterating the proper divisors of 12 is 12->16->15->9->4->3->1->0
		

References

  • Benito, Manuel; Creyaufmueller, Wolfgang; Varona, Juan Luis; and Zimmermann, Paul; Aliquot Sequence 3630 Ends After Reaching 100 Digits; Experimental Mathematics, Vol. 11, No. 2, Natick, MA, 2002, pp. 201-206.

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSigma[1, n] - n; g[n_] := If[n > 0, s[n], 0]; Trajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; Select[Range[2, 275], Last[Trajectory[ # ]] == 0 &]

Formula

Define s(i)=sigma(i)-i=A000203(i)-i. Then if the aliquot sequence obtained by repeatedly iterating s contains a prime as a member of its trajectory, i is included in this sequence

A127162 Composite numbers whose aliquot sequences terminate by encountering a prime number.

Original entry on oeis.org

4, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99
Offset: 1

Views

Author

Ant King, Jan 06 2007

Keywords

Examples

			a(5)=12 because the fifth composite number whose aliquot sequence terminates by encountering a prime as a member of its trajectory is 12. The complete aliquot sequence generated by iterating the proper divisors of 12 is 12->16->15->9->4->3->1->0
		

References

  • Benito, Manuel; Creyaufmueller, Wolfgang; Varona, Juan Luis; and Zimmermann, Paul; Aliquot Sequence 3630 Ends After Reaching 100 Digits; Experimental Mathematics, Vol. 11, No. 2, Natick, MA, 2002, pp. 201-206.

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSigma[1, n] - n; g[n_] := If[n > 0, s[n], 0]; Trajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; Select[Range[2, 275], ! PrimeQ[ # ] && Last[Trajectory[ # ]] == 0 &]

Formula

Define s(i)=sigma(i)-i=A000203(i)-i. Then if i is composite and the aliquot sequence obtained by repeatedly applying the mapping i->s(i) contains a prime as a member of its trajectory, i is included in this sequence.

A135244 Largest m such that the sum of the aliquot parts of m (A001065) equals n, or 0 if no such number exists.

Original entry on oeis.org

0, 4, 9, 0, 25, 8, 49, 15, 14, 21, 121, 35, 169, 33, 26, 55, 289, 77, 361, 91, 38, 85, 529, 143, 46, 133, 28, 187, 841, 221, 961, 247, 62, 253, 24, 323, 1369, 217, 81, 391, 1681, 437, 1849, 403, 86, 493, 2209, 551, 94, 589, 0, 667, 2809, 713, 106, 703, 68, 697, 3481
Offset: 2

Views

Author

Ophir Spector (ospectoro(AT)yahoo.com), Nov 25 2007

Keywords

Comments

Previous name: Aliquot predecessors with the largest values.
Find each node's predecessors in aliquot sequences and choose the largest predecessor.
Climb the aliquot trees on shortest paths (see A135245 = Climb the aliquot trees on thickest branches).
The sequence starts at offset 2, since all primes satisfy sigma(n)-n = 1. - Michel Marcus, Nov 11 2014

Examples

			a(25) = 143 since 25 has 3 predecessors (95,119,143), 143 being the largest.
a(5) = 0 since it has no predecessors (see Untouchables - A005114).
		

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{s = Table[0, {n, 1, max}], i}, Do[If[(i = DivisorSigma[1, n] - n) <= max, s[[i]] = Max[s[[i]], n]], {n, 2, (max - 1)^2}]; Rest @ s]; seq[50]
  • PARI
    lista(nn) = {for (n=2, nn, k = (n-1)^2; while(k && (sigma(k)-k != n), k--); print1(k, ", "););} \\ Michel Marcus, Nov 11 2014

Extensions

a(1)=0 removed and offset set to 2 by Michel Marcus, Nov 11 2014
New name from Michel Marcus, Oct 31 2023

A135245 Aliquot predecessors with the largest degrees.

Original entry on oeis.org

0, 0, 4, 9, 0, 25, 8, 49, 15, 14, 21, 121, 35, 169, 33, 12, 55, 289, 65, 361, 91, 20, 85, 529, 143, 46, 133, 28, 187, 841, 161, 961, 247, 62, 253, 24, 323, 1369, 217, 81, 391, 1681, 341, 1849, 403, 86, 493, 2209, 551, 40, 481, 0, 667, 2809, 533, 106, 703, 68, 697, 3481
Offset: 1

Views

Author

Ophir Spector, ospectoro (AT) yahoo.com, Nov 25 2007

Keywords

Comments

Find each node's predecessors in aliquot sequences and choose the node with largest number of predecessors.
Climb the aliquot trees on thickest branches (see A135244 = Climb the aliquot trees on shortest paths).

Examples

			a(25) = 143 since 25 has 3 predecessors (95,119,143) with degrees (4,5,7), 143 having the largest degree. a(5) = 0 since it has no predecessors (see Untouchables - A005114).
		

Crossrefs

A121508 Conjectured list of numbers whose aliquot sequence eventually reaches a cycle of length two or more, but which are not themselves part of the cycle.

Original entry on oeis.org

562, 1064, 1188, 1308, 1336, 1380, 1420, 1490, 1604, 1690, 1692, 1772, 1816, 1898, 2008, 2122, 2152, 2172, 2362, 2542, 2630, 2652, 2676, 2678, 2856, 2930, 2950, 2974, 3124, 3162, 3202, 3278, 3286, 3332, 3350, 3360, 3596, 3712, 3750, 3850, 3938, 3944
Offset: 1

Views

Author

Joshua Zucker, Aug 04 2006

Keywords

Crossrefs

Cf. A121507.

Extensions

Edited by Don Reble, Aug 15 2006

A347769 a(0) = 0; a(1) = 1; for n > 1, a(n) = A001065(a(n-1)) = sigma(a(n-1)) - a(n-1) (the sum of aliquot parts of a(n-1)) if this is not yet in the sequence; otherwise a(n) is the smallest number missing from the sequence.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 15, 13, 14, 17, 18, 21, 19, 20, 22, 23, 24, 36, 55, 25, 26, 27, 28, 29, 30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 31, 32, 34, 35, 37, 38, 39, 40, 50, 43, 41, 44, 46, 47, 48, 76, 64, 63, 49, 51, 52, 53, 56, 57, 58, 59, 60, 108, 172
Offset: 0

Views

Author

Eric Chen, Sep 13 2021

Keywords

Comments

This sequence is a permutation of the nonnegative integers iff Catalan's aliquot sequence conjecture (also called Catalan-Dickson conjecture) is true.
a(563) = 276 is the smallest number whose aliquot sequence has not yet been fully determined.
As long as the aliquot sequence of 276 is not known to be finite or eventually periodic, a(563+k) = A008892(k).

Examples

			a(0) = 0, a(1) = 1;
since A001065(a(1)) = 0 has already appeared in this sequence, a(2) = 2;
since A001065(a(2)) = 1 has already appeared in this sequence, a(3) = 3;
...
a(11) = 11;
since A001065(a(11)) = 1 has already appeared in this sequence, a(12) = 12;
since A001065(a(12)) = 16 has not yet appeared in this sequence, a(13) = A001065(a(12)) = 16;
since A001065(a(13)) = 15 has not yet appeared in this sequence, a(14) = A001065(a(13)) = 15;
since A001065(a(14)) = 9 has already appeared in this sequence, a(15) = 13;
...
		

Crossrefs

Cf. A032451.
Cf. A001065 (sum of aliquot parts).
Cf. A003023, A044050, A098007, A098008: ("length" of aliquot sequences, four versions).
Cf. A007906.
Cf. A115060 (maximum term of aliquot sequences).
Cf. A115350 (termination of the aliquot sequences).
Cf. A098009, A098010 (records of "length" of aliquot sequences).
Cf. A290141, A290142 (records of maximum term of aliquot sequences).
Aliquot sequences starting at various numbers: A000004 (0), A000007 (1), A033322 (2), A010722 (6), A143090 (12), A143645 (24), A010867 (28), A008885 (30), A143721 (38), A008886 (42), A143722 (48), A143723 (52), A008887 (60), A143733 (62), A143737 (68), A143741 (72), A143754 (75), A143755 (80), A143756 (81), A143757 (82), A143758 (84), A143759 (86), A143767 (87), A143846 (88), A143847 (96), A143919 (100), A008888 (138), A008889 (150), A008890 (168), A008891 (180), A203777 (220), A008892 (276), A014360 (552), A014361 (564), A074907 (570), A014362 (660), A269542 (702), A045477 (840), A014363 (966), A014364 (1074), A014365 (1134), A074906 (1521), A143930 (3630), A072891 (12496), A072890 (14316), A171103 (46758), A072892 (1264460).

Programs

  • PARI
    A347769_list(N)=print1(0, ", "); if(N>0, print1(1, ", ")); v=[0, 1]; b=1; for(n=2, N, if(setsearch(Set(v), sigma(b)-b), k=1; while(k<=n, if(!setsearch(Set(v), k), b=k; k=n+1, k++)), b=sigma(b)-b); print1(b, ", "); v=concat(v, b))
Showing 1-9 of 9 results.