A127164 Integers whose aliquot sequences terminate by encountering the prime 7. Also known as the prime family 7.
7, 8, 10, 14, 20, 22, 34, 38, 49, 62, 75, 118, 148, 152, 169, 188, 213, 215
Offset: 1
Examples
a(5)=20 because the fifth integer whose aliquot sequence terminates by encountering the prime 7 as a member of its trajectory is 20. The complete aliquot sequence generated by iterating the proper divisors of 15 is 20->22->14->10->8->7->1->0
References
- Benito, Manuel; Creyaufmueller, Wolfgang; Varona, Juan Luis; and Zimmermann, Paul; Aliquot Sequence 3630 Ends After Reaching 100 Digits; Experimental Mathematics, Vol. 11, No. 2, Natick, MA, 2002, pp. 201-206.
Links
- Manuel Benito and Juan L. Varona, Advances In Aliquot Sequences, Mathematics of Computation, Vol. 68, No. 225, (1999), pp. 389-393.
- Wolfgang Creyaufmueller, Aliquot sequences.
Crossrefs
Programs
-
Mathematica
s[n_] := DivisorSigma[1, n] - n; g[n_] := If[n > 0, s[n], 0]; Trajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; Select[Range[275], MemberQ[Trajectory[ # ], 7] &]
Formula
Define s(i)=sigma(i)-i=A000203(i)-i. Then if the aliquot sequence obtained by repeatedly applying the mapping i->s(i) terminates by encountering the prime 7 as a member of its trajectory, i is included in this sequence.
Comments