cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063774 Numbers k such that the number of divisors of k^2 is a square.

Original entry on oeis.org

1, 6, 10, 14, 15, 16, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194
Offset: 1

Views

Author

Jason Earls, Aug 15 2001

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 3, 35, 326, 3275, 33090, 332435, 3327555, 33283964, 332868092, 3328794682, ... . Apparently, the asymptotic density of this sequence exists and equals 0.3328... . - Amiram Eldar, Nov 28 2023

Examples

			n=2: a(2) = 6 because the number of divisors of 6^2 is 9, a square.
		

Crossrefs

Subsequences: A030229, A238748.

Programs

  • Mathematica
    Select[Range[200],IntegerQ[Sqrt[DivisorSigma[0,#^2]]]&] (* Harvey P. Dale, Jun 06 2012 *)
  • PARI
    j=[]; for(n=1,500,a=numdiv(n^2); if(issquare(a),j=concat(j,n))); j
    
  • PARI
    n=0; for (m=1, 10^9, if(issquare(numdiv(m^2)), write("b063774.txt", n++, " ", m); if (n==1000, break))) \\ Harry J. Smith, Aug 30 2009
    
  • PARI
    is(n)=my(f=factor(n)[,2]); issquare(prod(i=1,#f,2*f[i]+1)) \\ Charles R Greathouse IV, Sep 18 2015

Formula

{n: A048691(n) in A000290}. - R. J. Mathar, Aug 09 2012