cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063783 Numbers k such that the sum of the cubes of divisors of k is a prime.

Original entry on oeis.org

4, 9, 121, 36481, 72361, 146689, 259081, 654481, 683929, 786769, 1985281, 2036329, 3193369, 3636649, 3798601, 4583881, 5031049, 5470921, 5555449, 6135529, 6713281, 7284601, 7778521, 16589329, 20403289, 21557449, 22915369, 26739241, 27426169, 30261001, 30591961
Offset: 1

Views

Author

Labos Elemer, Aug 17 2001

Keywords

Comments

Solutions to sigma_3(x) = prime.

Examples

			All these terms are squares of primes {2, 3, 11, 191, 269, 383, 509, 809, 827, 887, 1409, 1427, 1787, 1907, 1949, 2141, 2243, 2339, 2357, 2477, 2591, 2699, 2789, ...}, so their sigma_3(p^2) = p^6 + p^3 + 1 has polynomial of degree 6.
sigma_3(9) = 1 + 27 + 729 = 757 is a prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[500]]^2, PrimeQ@ DivisorSigma[3, #] &] (* Michael De Vlieger, Jul 16 2017 *)
  • PARI
    { n=0; p=0; for (m=1, 10^9, p=nextprime(p+1); if(isprime(p^6 + p^3 + 1), write("b063783.txt", n++, " ", p^2); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 31 2009

Formula

a(n) = A066100(n)^2. - Amiram Eldar, Aug 16 2024