cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A066100 Primes p such that p^6 + p^3 + 1 is prime.

Original entry on oeis.org

2, 3, 11, 191, 269, 383, 509, 809, 827, 887, 1409, 1427, 1787, 1907, 1949, 2141, 2243, 2339, 2357, 2477, 2591, 2699, 2789, 4073, 4517, 4643, 4787, 5171, 5237, 5501, 5531, 5693, 6311, 6329, 6359, 6911, 6947, 7019, 7253, 7349, 7499, 7577, 7691, 7907, 8819
Offset: 1

Views

Author

Labos Elemer, Dec 04 2001

Keywords

Comments

Original name: "Primes p such that the sum of the cubes of the divisors of p^2 is prime."
Primes p such that sigma_3(p^2) is prime.
It appears that squares of these primes give A063783, those numbers whose sum of cubes of divisors is prime.

Examples

			p=11: p^2=121, cubes of divisors of p^2 = {p^6, p^3, 1}, sigma_3(p^2) = p^6 + p^3 + 1 = 1771561 + 1331 + 1 = 1772893 = q, a prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range@ 1200, PrimeQ@ DivisorSigma[3, #^2] &] (* Michael De Vlieger, Jul 16 2017 *)
  • PARI
    isok(p) = { isprime(p) && isprime(sigma(p^2, 3)) } \\ Harry J. Smith, Nov 13 2009

Formula

a(n) = sqrt(A063783(n)). - Amiram Eldar, Aug 16 2024

Extensions

Name replaced with simpler description offered in an Oct 10 2010 comment by James R. Buddenhagen by Jon E. Schoenfield, Jul 17 2017

A063784 Primes that are the sum of cubes of divisors of some integer.

Original entry on oeis.org

73, 757, 1772893, 48551233240513, 378890487846991, 3156404483062657, 17390284913300671, 280343912759041771, 319913861581383373, 487014306953858713, 7824668707707203971, 8443914727229480773, 32564717507686012813, 48095468363380957093, 54811417636756749151
Offset: 1

Views

Author

Labos Elemer, Aug 17 2001

Keywords

Comments

Primes of the form p^6 + p^3 + 1 where p is a prime. - Amiram Eldar, Aug 16 2024

Examples

			sigma_3(9) = 1 + 27 + 729 = 757, a prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[p^6 + p^3 + 1, {p, Prime[Range[500]]}], PrimeQ] (* Amiram Eldar, Aug 16 2024 *)
  • PARI
    { n=0; p=0; for (m=1, 10^9, p=nextprime(p+1); if(isprime(q=p^6 + p^3 + 1), write("b063784.txt", n++, " ", q); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 31 2009

Formula

Primes of form p = sigma_3(k).
From Amiram Eldar, Aug 16 2024: (Start)
a(n) = A001158(A063783(n)).
a(n) = A060883(A066100(n)). (End)

A252040 Least number k such that the sum of the n-th powers of divisors of k is prime, or 0 if there is no such k.

Original entry on oeis.org

2, 2, 4, 2, 3418801, 0, 64, 2, 4, 0, 21611482313284249, 0, 38580382095460899155325996786287338133521, 0, 0, 2, 2908327322588596409721563830760333292497745890881, 0, 366742604046618684582110328334808145525757868881, 0, 0, 0, 264638735999480827156185738343112840094453729311824181089
Offset: 1

Views

Author

Derek Orr, Dec 12 2014

Keywords

Comments

a(n) = 2 if and only if 2^n + 1 is in A019434.
From Jinyuan Wang, Jan 30 2021: (Start)
a(n) = 0 if n > 1 is not a prime power. Proof: note that sigma_n(k) = Product_{i=1..m} (1 + p_i^n + ... + p_i^(n*e_i)), where k = Product_{i=1..m} p_i^e_i. We only need to prove when n > 1 is not a prime power and e > 1, s = Sum_{i=0..e-1} p^(n*i) = (p^(n*e) - 1)/(p^n - 1) is composite. If e is prime, then s is divisible by (p^(e^(t+1)) - 1)/(p^(e^t) - 1), where t is the e-adic valuation of n. If e is composite, then s is divisible by (p^(n*q) - 1)/(p^n - 1), where q is a prime factor of e.
Corollary: k must be of the form p^(e - 1) when n = e^t, where p and e are primes. Therefore, a(2^t) = 0 if 2^2^t + 1 is composite. (End)

Examples

			2 has two divisors, 2 and 1. 2^3 + 1^3 = 9 is not prime.
3 has two divisors, 3 and 1. 3^3 + 1^3 = 28 is not prime.
4 has three divisors, 4, 2, and 1. 4^3 + 2^3 + 1^3 = 73 is prime. So, a(3) = 4.
		

Crossrefs

Cf. A023194 (sigma(n) is prime), A063783 (sigma_3(n) is prime).

Programs

  • Mathematica
    a252040[n_Integer] := If[PrimePowerQ[n] && (p=First@ First@ FactorInteger[n])>2, q=2; While[!PrimeQ[DivisorSigma[n, q^(p-1)]], q=NextPrime[q]]; q^(p-1), 2*Boole[PrimeQ[2^n+1]]]; a252040 /@ Range[10] (* Michael De Vlieger, Dec 13 2014 *) (* modified by Jinyuan Wang, Jan 30 2021 *)
  • PARI
    a(n) = if(isprimepower(n, &p) && p>2, my(q=2); while(!ispseudoprime(sigma(q^(p-1), n)), q=nextprime(q+1)); q^(p-1), 2*isprime(2^n+1)); \\ Modified by Jinyuan Wang, Jan 25 2021

Extensions

Name edited by and more terms from Jinyuan Wang, Jan 30 2021

A073807 Number of divisors of sum of cube of divisors.

Original entry on oeis.org

1, 3, 6, 2, 12, 18, 8, 12, 2, 20, 18, 12, 8, 24, 36, 4, 32, 6, 24, 24, 24, 30, 36, 72, 4, 24, 32, 16, 24, 60, 36, 16, 60, 48, 60, 4, 16, 72, 24, 80, 24, 72, 24, 36, 24, 60, 60, 24, 8, 12, 96, 16, 20, 96, 80, 96, 50, 40, 72, 72, 16, 108, 16, 8, 54, 100, 12, 64, 108, 100, 32, 24
Offset: 1

Views

Author

Labos Elemer, Aug 13 2002

Keywords

Comments

a(n) = 2 for n in A063783. - Robert Israel, Jul 12 2023

Examples

			For n=10: D={1,2,5,10}, 1+8+125+1000=1134, divisors(1134)={1,2,3,6,7,9,14,18,21,27,42,54,63,81,126,162,189,378,567,1134} so a(10)=20.
		

Crossrefs

Programs

  • Maple
    f:= n -> numtheory:-tau(numtheory:-sigma[3](n)):
    map(f, [$1..100]); # Robert Israel, Jul 12 2023
  • Mathematica
    Table[DivisorSigma[0,DivisorSigma[3,n]],{n,80}] (* Harvey P. Dale, Dec 13 2011 *)
  • PARI
    a(n) = numdiv(sigma(n, 3)); \\ Michel Marcus, Jul 13 2023

Formula

a(n) = A000005(A001158(n)).
Showing 1-4 of 4 results.