A066100 Primes p such that p^6 + p^3 + 1 is prime.
2, 3, 11, 191, 269, 383, 509, 809, 827, 887, 1409, 1427, 1787, 1907, 1949, 2141, 2243, 2339, 2357, 2477, 2591, 2699, 2789, 4073, 4517, 4643, 4787, 5171, 5237, 5501, 5531, 5693, 6311, 6329, 6359, 6911, 6947, 7019, 7253, 7349, 7499, 7577, 7691, 7907, 8819
Offset: 1
Keywords
Examples
p=11: p^2=121, cubes of divisors of p^2 = {p^6, p^3, 1}, sigma_3(p^2) = p^6 + p^3 + 1 = 1771561 + 1331 + 1 = 1772893 = q, a prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
- Paolo Santonastaso and Ferdinando Zullo, Linearized trinomials with maximum kernel, Journal of Pure and Applied Algebra, Vol. 226, No. 3 (2022), 106842; arXiv preprint, arXiv:2012.14861 [math.NT], 2020-2021.
Programs
-
Mathematica
Select[Prime@ Range@ 1200, PrimeQ@ DivisorSigma[3, #^2] &] (* Michael De Vlieger, Jul 16 2017 *)
-
PARI
isok(p) = { isprime(p) && isprime(sigma(p^2, 3)) } \\ Harry J. Smith, Nov 13 2009
Formula
a(n) = sqrt(A063783(n)). - Amiram Eldar, Aug 16 2024
Extensions
Name replaced with simpler description offered in an Oct 10 2010 comment by James R. Buddenhagen by Jon E. Schoenfield, Jul 17 2017
Comments