cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A078970 Cycle of the inventory sequence (as in A063850) starting with n consists of prime numbers.

Original entry on oeis.org

39, 93, 349, 394, 439, 493, 934, 943, 999, 1139, 1193, 1319, 1391, 1913, 1931, 1999, 3139, 3193, 3319, 3339, 3391, 3393, 3913, 3931, 3933, 9111, 9139, 9193, 9319, 9391, 9399, 9913, 9931, 9939, 9993, 11129, 11192, 11219, 11291, 11912, 11921, 12119, 12191, 12239
Offset: 1

Views

Author

Joseph L. Pe, Jan 14 2003

Keywords

Comments

It can be proved that any inventory sequence ends in a cycle all of whose terms are <= 10^20.

Examples

			The inventory sequence starting with 39 is: 39, 1319, 211319, 12311319, 41122319, 1431221319, 4114232219, 2431321319, 2214333119, 2231143319, 2233311419, 2233311419, .... The cycle is 2233311419, 2233311419, .... and 2233311419 is prime, so 39 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    g[n_] := Module[{seen, r, d, l, i, t}, seen = {}; r = {}; d = IntegerDigits[n]; l = Length[d]; For[i = 1, i <= l, i++, t = d[[i]]; If[ ! MemberQ[seen, t], r = Join[r, IntegerDigits[Count[d, t]]]; r = Join[r, {t}]; seen = Append[seen, t]]]; FromDigits[r]];
    pr[n_] := Module[{r, t, p1, p, a}, r = {}; t = g[n]; a = True; While[ ! MemberQ[r, t], r = Append[r, t]; t = g[t]]; r = Append[r, t]; p1 = Flatten[Position[r, t]]; p = PrimeQ[Drop[r, p1[[1]]]]; If[MemberQ[p, False], a = False]; a];
    l = {}; For[k = 1, k <= 10^4, k++, If[pr[k], l = Append[l, k]]]; l

Extensions

Missing terms inserted by Sean A. Irvine, Jul 25 2025

A112512 Say what you see in previous term, same as A063850, but starting with 2.

Original entry on oeis.org

2, 12, 1112, 3112, 132112, 311322, 232122, 421311, 14123113, 41141223, 24312213, 32142321, 23322114, 32232114, 23322114, 32232114, 23322114, 32232114
Offset: 1

Views

Author

Michele Dondi (blazar(AT)lcm.mi.infn.it), Sep 09 2005

Keywords

Comments

Eventually periodic, eventually identical (to a shift of) A063850.

Crossrefs

Programs

A112515 Say what you see in previous term, same as A063850 but starting with 5.

Original entry on oeis.org

5, 15, 1115, 3115, 132115, 31131215, 23411215, 2213143115, 2241231415, 3224311315, 3322143115, 3322311415, 3322311415, 3322311415, 3322311415, 3322311415, 3322311415
Offset: 1

Views

Author

Michele Dondi (blazar(AT)lcm.mi.infn.it), Sep 09 2005

Keywords

Crossrefs

Programs

A078786 Period of cycle of the inventory sequence (as in A063850) starting with n.

Original entry on oeis.org

2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 4, 2, 1, 2, 1, 1, 4, 4, 4, 4, 3, 1, 1, 1, 1, 1, 4, 3, 3, 3, 2, 1, 1, 1, 4, 4, 1, 3, 2, 2, 2, 1, 1, 1, 4, 3, 3, 1, 2, 2, 2, 1, 1, 1, 4, 3, 2, 2, 1, 2, 2, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1
Offset: 1

Views

Author

Joseph L. Pe, Jan 14 2003

Keywords

Comments

It can be proved that any inventory sequence ends in a cycle all of whose terms are <= 10^20. Conjecture: a(n) <= 4 for all n. It suffices to check this for all inventory sequences starting with n, where n <= 10^20.

Examples

			The inventory sequence starting with 1 is: 1, 11, 21, 1211, 3112, 132112, 311322, 232122, 421311, 14123113, 41141223, 24312213, 32142321, 23322114, 32232114, 23322114, .... which ends in the cycle 32232114, 23322114 of period 2. Hence a(1) = 2.
		

Crossrefs

Programs

  • Mathematica
    g[n_] := Module[{seen, r, d, l, i, t}, seen = {}; r = {}; d = IntegerDigits[n]; l = Length[d]; For[i = 1, i <= l, i++, t = d[[i]]; If[ ! MemberQ[seen, t], r = Join[r, IntegerDigits[Count[d, t]]]; r = Join[r, {t}]; seen = Append[seen, t]]]; FromDigits[r]];
    per[n_] := Module[{r, t, p1, p}, r = {}; t = g[n]; While[ ! MemberQ[r, t], r = Append[r, t]; t = g[t]]; r = Append[r, t]; p1 = Flatten[Position[r, t]]; p = p1[[2]] - p1[[1]]; p]; Table[per[i], {i, 1, 100}]

A079466 Numbers k such that the "inventory" A063850 of k is a palindrome.

Original entry on oeis.org

1, 22, 112, 121, 211, 333, 1113, 1131, 1311, 3111, 4444, 11114, 11141, 11411, 14111, 22233, 22323, 22332, 23223, 23232, 23322, 32223, 32232, 32322, 33222, 41111, 55555
Offset: 1

Views

Author

Joseph L. Pe, Jan 14 2003

Keywords

Examples

			The "inventory" of 112 is 2112 (two "1"s, one "2"), which is a palindrome. Hence 112 belongs to the sequence.
		

Crossrefs

Cf. A063850. Different from A079676.

Programs

  • Mathematica
    g[n_] := Module[{seen, r, d, l, i, t}, seen = {}; r = {}; d = IntegerDigits[n]; l = Length[d]; For[i = 1, i <= l, i++, t = d[[i]]; If[ ! MemberQ[seen, t], r = Join[r, IntegerDigits[Count[d, t]]]; r = Join[r, {t}]; seen = Append[seen, t]]]; FromDigits[r]]; isPalin[n_] := (n == FromDigits[Reverse[IntegerDigits[n]]]); Select[Range[10^5], isPalin[g[ # ]] &]

A079464 Numbers k such that the "inventory" A063850 of k is prime.

Original entry on oeis.org

1, 3, 7, 9, 17, 23, 27, 33, 39, 51, 63, 69, 81, 93, 99, 111, 113, 127, 131, 133, 137, 193, 199, 203, 209, 223, 232, 233, 271, 299, 301, 311, 313, 331, 359, 361, 367, 371, 377, 414, 431, 433, 439, 441, 447, 451, 463, 469, 474, 477, 479, 481, 497, 499, 503, 523
Offset: 1

Views

Author

Joseph L. Pe, Jan 14 2003

Keywords

Examples

			The "inventory" of 299 is 1229 (one "2", two "9"s), which is prime. Hence 299 belongs to the sequence.
		

Crossrefs

Cf. A063850.

Programs

  • Mathematica
    g[n_] := Module[{seen, r, d, l, i, t}, seen = {}; r = {}; d = IntegerDigits[n]; l = Length[d]; For[i = 1, i <= l, i++, t = d[[i]]; If[ ! MemberQ[seen, t], r = Join[r, IntegerDigits[Count[d, t]]]; r = Join[r, {t}]; seen = Append[seen, t]]]; FromDigits[r]]; Select[Range[10^3], PrimeQ[g[ # ]] &]

A079465 Numbers k such that the "inventory" A063850 of k is a perfect square.

Original entry on oeis.org

6, 55, 116, 161, 255, 511, 666, 969, 996, 5311, 9666, 9999, 12255, 12525, 12552, 41199, 41919, 41991, 54246, 54264, 54426, 71177, 71717, 71771, 72255, 72525, 72552, 77117, 77171, 77711, 78055, 83399, 83939, 83993, 89999, 97117, 97171
Offset: 1

Views

Author

Joseph L. Pe, Jan 14 2003

Keywords

Examples

			The "inventory" of 511 is 1521 (one "5", two "1"s) = 39^2. Hence 1521 belongs to the sequence.
		

Crossrefs

Cf. A063850.

Programs

  • Mathematica
    g[n_] := Module[{seen, r, d, l, i, t}, seen = {}; r = {}; d = IntegerDigits[n]; l = Length[d]; For[i = 1, i <= l, i++, t = d[[i]]; If[ ! MemberQ[seen, t], r = Join[r, IntegerDigits[Count[d, t]]]; r = Join[r, {t}]; seen = Append[seen, t]]]; FromDigits[r]]; Select[Range[10^5], IntegerQ[Sqrt[g[ # ]]] &]

A079470 Primes with prime inventory number (as in A063850).

Original entry on oeis.org

3, 7, 17, 23, 113, 127, 131, 137, 193, 199, 223, 233, 271, 311, 313, 331, 359, 367, 431, 433, 439, 463, 479, 499, 503, 523, 587, 607, 641, 677, 691, 733, 773, 797, 809, 821, 823, 829, 853, 997, 1009, 1069, 1123, 1129, 1187, 1213, 1217, 1223, 1231, 1277, 1291
Offset: 1

Views

Author

Joseph L. Pe, Jan 15 2003

Keywords

Examples

			The prime 127 has inventory number 111217 (one "1", one "2", one "7"), which is also prime. Hence 127 belongs to the sequence.
		

Crossrefs

Cf. A063850.

Programs

  • Mathematica
    g[n_] := Module[{seen, r, d, l, i, t}, seen = {}; r = {}; d = IntegerDigits[n]; l = Length[d]; For[i = 1, i <= l, i++, t = d[[i]]; If[ ! MemberQ[seen, t], r = Join[r, IntegerDigits[Count[d, t]]]; r = Join[r, {t}]; seen = Append[seen, t]]]; FromDigits[r]]; s = {}; For[j = 1, j <= 10^3, j++, temp = Prime[j]; If[PrimeQ[g[temp]], s = Append[s, temp]]]; s

A112513 Same as A063850, Say what you see in previous term, but starting with 3.

Original entry on oeis.org

3, 13, 1113, 3113, 2321, 221311, 223113, 222321, 421311, 14123113, 41141223, 24312213, 32142321, 23322114, 32232114, 23322114, 32232114, 23322114, 32232114, 23322114
Offset: 1

Views

Author

Michele Dondi (blazar(AT)lcm.mi.infn.it), Sep 09 2005

Keywords

Comments

Eventually periodic.

Crossrefs

Programs

A112514 Say what you see in previous term, same as A063850 but starting with 4.

Original entry on oeis.org

4, 14, 1114, 3114, 132114, 31131214, 23411214, 22132431, 32212314, 23322114, 32232114, 23322114, 32232114, 23322114, 32232114, 23322114, 32232114, 23322114, 32232114
Offset: 1

Views

Author

Michele Dondi (blazar(AT)lcm.mi.infn.it), Sep 09 2005

Keywords

Comments

Eventually periodic.

Crossrefs

Programs

Showing 1-10 of 24 results. Next