A063851 Triangle T(n,k) (n >= 3, k = 1..n-2) read by rows giving number of nonisomorphic nondegenerate oriented matroids with n points in n-k dimensions.
1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 11, 11, 1, 1, 1, 135, 2628, 135, 1, 1, 1, 4382, 9276601, 9276601, 4382, 1, 1, 1, 312356
Offset: 3
Examples
Triangle begins: 1 1,1, 1,1,1, 1,1,1,4, 1,1,1,11,11, 1,1,1,135,2628,135, 1,1,1,4382,9276601,9276601,4382, 1,1,1,312356,...
Links
- Lukas Finschi, Homepage of Oriented Matroids [Gives T(9, 5) = T(9, 6) = 9276595.]
- L. Finschi and K. Fukuda, Complete combinatorial generation of small point set configurations and hyperplane arrangements, pp. 97-100 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 13-15, 2001.
- Lukas Finschi, A Graph Theoretical Approach for Reconstruction and Generation of Oriented Matroids, A dissertation submitted to the Swiss Federal Institute of Technology, Zurich for the degree of Doctor of Mathematics, 2001.
- Komei Fukuda, Hiroyuki Miyata and Sonoko Moriyama, Complete Enumeration of Small Realizable Oriented Matroids. Discrete Comput. Geom. 49 (2013), no. 2, 359--381. MR3017917. - From _N. J. A. Sloane_, Feb 16 2013 [Beware typos in Table 1.]
Crossrefs
Extensions
More terms taken from Fukuda et al., 2013. - N. J. A. Sloane, Feb 16 2013