cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A222315 Second-from-right diagonal of A063851.

Original entry on oeis.org

1, 1, 1, 11, 2628, 9276601
Offset: 4

Views

Author

N. J. A. Sloane, Feb 16 2013

Keywords

References

  • Fukuda, Komei; Miyata, Hiroyuki; Moriyama, Sonoko. Complete Enumeration of Small Realizable Oriented Matroids. Discrete Comput. Geom. 49 (2013), no. 2, 359--381. MR3017917.

Crossrefs

Cf. A063851.

A006248 Number of projective pseudo order types: simple arrangements of pseudo-lines in the projective plane.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 11, 135, 4382, 312356, 41848591, 10320613331
Offset: 1

Views

Author

Keywords

References

  • J. Bokowski, personal communication.
  • J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 102.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006245, A006246, A018242, A063666. A diagonal of A063851.

Formula

Asymptotics: 2^{Cn^2} <= a(n) <= 2^{Dn^2} for every n >= N, where N,C,D are constants with 0.1887Manfred Scheucher, Apr 10 2025 on personal communication with Günter Rote.]

Extensions

a(11) from Franz Aurenhammer (auren(AT)igi.tu-graz.ac.at), Feb 05 2002
a(12) from Manfred Scheucher and Günter Rote, Sep 07 2019
Definition corrected by Günter Rote, Dec 01 2021

A063804 Triangle T(n,k) (n >= 3, k = 1..n-2) read by rows, giving number of nonisomorphic oriented matroids with n points in n-k dimensions.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 12, 17, 1, 5, 25, 206, 143, 1, 6, 50, 6029, 181472, 4890, 1, 7, 91, 508321
Offset: 3

Views

Author

N. J. A. Sloane, Aug 20 2001

Keywords

Examples

			Triangle begins:
1
1 2
1 3 4
1 4 12 17
1 5 25 206 143
1 6 50 6029 181472 4890
1 7 91 508321 unknown unknown 461053
...
		

References

  • Lukas Finschi, A Graph Theoretical Approach for Reconstruction and Generation of Oriented Matroids, A dissertation submitted to the Swiss Federal Institute of Technology, Zurich for the degree of Doctor of Mathematics, 2001.
  • Fukuda, Komei; Miyata, Hiroyuki; Moriyama, Sonoko. Complete Enumeration of Small Realizable Oriented Matroids. Discrete Comput. Geom. 49 (2013), no. 2, 359--381. MR3017917. - From N. J. A. Sloane, Feb 16 2013

Crossrefs

Diagonals give A063800-A063803, A246988, A246989. Row sums give A063805. For nondegenerate matroids see A063851.

A063852 Number of nonisomorphic nondegenerate oriented matroids with n points in dimensions 2 through n-1.

Original entry on oeis.org

1, 2, 3, 7, 25, 2901
Offset: 3

Views

Author

N. J. A. Sloane, Aug 26 2001

Keywords

Crossrefs

Row sums of A063851.

A222317 Triangle read by rows: T(n,k) (n>=3, 1<=k<=n-2) = number of uniform realizable oriented matroids with n elements and rank n-k+1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 11, 11, 1, 1, 1, 135, 2604, 135, 1, 1, 1, 4381
Offset: 3

Views

Author

N. J. A. Sloane, Feb 16 2013

Keywords

Examples

			Triangle begins
1
1 1
1 1 1
1 1 1 4
1 1 1 11 11
1 1 1 135 2604 135
1 1 1 4381 unknown unknown unknown
...
		

References

  • Fukuda, Komei; Miyata, Hiroyuki; Moriyama, Sonoko. Complete Enumeration of Small Realizable Oriented Matroids. Discrete Comput. Geom. 49 (2013), no. 2, 359--381. MR3017917. (The (4) in the r=4 row of Table 2 should probably be (1).)

Crossrefs

Rightmost diagonal is A018242.
Different from A063851.
Showing 1-5 of 5 results.