cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063881 Number of oriented trees rooted at an arc.

Original entry on oeis.org

1, 4, 18, 80, 367, 1708, 8122, 39204, 191963, 950984, 4759626, 24030736, 122258314, 626162464, 3225926450, 16706775984, 86928097451, 454203897192, 2382255252398, 12537764465072, 66193294753768, 350472816969976, 1860542261745782, 9901018433270812
Offset: 2

Views

Author

Vladeta Jovovic, Aug 27 2001

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 61, (3.3.7).

Crossrefs

Programs

  • Maple
    B:= proc(n) option remember; if n<=1 then unapply(x,x) else unapply(convert(series(x*exp(2*sum(B(n-1)(x^k)/k, k=1..n-1)), x,n+1), polynom),x) fi end: a:= proc(n) local T; T:=B(n-1)(x); add(coeff(T,x,k)* coeff(T,x,n-k), k=1..n-1) end: seq(a(n), n=2..23); # Alois P. Heinz, Aug 23 2008
  • Mathematica
    B[n_ /; n <= 1] = Identity; B[n_] := B[n] = Function[x, Evaluate[Normal[Series[x*Exp[2*Sum[B[n-1][x^k]/k, {k, 1, n-1}]], {x, 0, n+1}]]]]; a[n_] := Module[{T}, T = B[n-1][x]; Sum[Coefficient[T, x, k]*Coefficient[T, x, n-k], {k, 1, n-1}]]; Table[a[n], {n, 2, 23}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)

Formula

a(n) = A000151(n)- A000238(n). G.f.: A(x) = B(x)^2, where B(x) is g.f. for A000151.