A063881 Number of oriented trees rooted at an arc.
1, 4, 18, 80, 367, 1708, 8122, 39204, 191963, 950984, 4759626, 24030736, 122258314, 626162464, 3225926450, 16706775984, 86928097451, 454203897192, 2382255252398, 12537764465072, 66193294753768, 350472816969976, 1860542261745782, 9901018433270812
Offset: 2
Keywords
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 61, (3.3.7).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..100
Programs
-
Maple
B:= proc(n) option remember; if n<=1 then unapply(x,x) else unapply(convert(series(x*exp(2*sum(B(n-1)(x^k)/k, k=1..n-1)), x,n+1), polynom),x) fi end: a:= proc(n) local T; T:=B(n-1)(x); add(coeff(T,x,k)* coeff(T,x,n-k), k=1..n-1) end: seq(a(n), n=2..23); # Alois P. Heinz, Aug 23 2008
-
Mathematica
B[n_ /; n <= 1] = Identity; B[n_] := B[n] = Function[x, Evaluate[Normal[Series[x*Exp[2*Sum[B[n-1][x^k]/k, {k, 1, n-1}]], {x, 0, n+1}]]]]; a[n_] := Module[{T}, T = B[n-1][x]; Sum[Coefficient[T, x, k]*Coefficient[T, x, n-k], {k, 1, n-1}]]; Table[a[n], {n, 2, 23}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)