cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A258895 Decimal expansion of a constant related to A063902 and A258662.

Original entry on oeis.org

4, 5, 2, 1, 0, 4, 2, 9, 9, 1, 8, 3, 4, 2, 0, 5, 2, 8, 8, 4, 1, 2, 8, 0, 8, 5, 5, 3, 6, 1, 0, 3, 2, 7, 9, 4, 0, 5, 5, 2, 5, 4, 5, 1, 8, 2, 2, 8, 1, 8, 5, 1, 3, 9, 4, 7, 3, 4, 7, 3, 1, 3, 3, 0, 6, 3, 5, 1, 4, 3, 3, 3, 8, 7, 5, 8, 9, 3, 8, 5, 2, 6, 5, 9, 1, 6, 5, 0, 7, 6, 0, 8, 9, 7, 5, 6, 0, 9, 3, 8, 8, 5, 6, 1, 8, 8
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 14 2015

Keywords

Examples

			0.4521042991834205288412808553610327940552545182281851394734731330635...
		

Crossrefs

Programs

  • Maple
    evalf(32*Pi / (GAMMA(1/6) * GAMMA(1/3))^2, 118);
    evalf(2^(17/3) * Pi^2 / (3 * GAMMA(1/3)^6), 118);
  • Mathematica
    RealDigits[32*Pi/(Gamma[1/6]*Gamma[1/3])^2,10,120][[1]]

Formula

Equals limit n->infinity (A063902(n)/(n!)^2)^(1/n).
Equals 32*Pi / (Gamma(1/6) * Gamma(1/3))^2.
Equals 2^(17/3) * Pi^2 / (3 * Gamma(1/3)^6).

A258662 E.g.f. A(x) satisfies: A(x) = exp( Integral A(x) * Integral 1/A(x)^2 dx dx ).

Original entry on oeis.org

1, 1, 4, 40, 760, 23200, 1038400, 64081600, 5214880000, 541085248000, 69718686400000, 10921720817920000, 2044231370959360000, 450550323286412800000, 115495483535461427200000, 34070943029324134912000000, 11460293146666575236608000000, 4360020024970859812710400000000, 1862768688935303816870072320000000
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2015

Keywords

Examples

			E.g.f.: A(x) = 1 + x^2/2! + 4*x^4/4! + 40*x^6/6! + 760*x^8/8! + 23200*x^10/10! +...
		

Crossrefs

Programs

  • PARI
    {a(n) = local(A=1+x); for(i=1, n, A = exp( intformal( A * intformal(1/A^2 + x*O(x^n)) ) ) ); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(2*n), ", "))

Formula

E.g.f.: 1 / [ Sum_{n>=0} (-1)^n * A063902(n) * x^(2*n) / (2*n)! ].
From Vaclav Kotesovec, Jun 14 2015: (Start)
a(n) ~ c * d^n * n!^2 / sqrt(n), where d = 3*A258895 = 96*Pi / (Gamma(1/6) * Gamma(1/3))^2 = 2^(17/3) * Pi^2 / Gamma(1/3)^6 = 1.3563128975502615865238..., c = 0.8047308283353177558313... = 12/(Gamma(1/3)*Gamma(1/6)) = 2^(7/3)*sqrt(3*Pi) / Gamma(1/3)^3.
a(n) ~ 2^(5*n+3) * 3^(n+1) * Pi^(n+1) * n^(2*n+1/2) / (exp(2*n) * Gamma(1/6)^(2*n+1) * Gamma(1/3)^(2*n+1)).
a(n) ~ sqrt(3) * 2^((17*n+10)/3) * Pi^(2*n+3/2) * n^(2*n+1/2) / (exp(2*n) * Gamma(1/3)^(6*n+3)).
(End)

A253649 Coefficients in the expansion of sn(t * x, m) / t in powers of x where t = sqrt( -1/2 - sqrt(1/3)), m = -7 + sqrt(48), and sn() is a Jacobi elliptic function.

Original entry on oeis.org

1, 1, 0, -10, -80, 0, 17600, 418000, 0, -496672000, -23576960000, 0, 91442700800000, 7255463564800000, 0, -69994087116448000000, -8354181454767104000000, 0, 169165728883243642880000000, 28336045031124313753600000000, 0, -1072156342430107319243161600000000
Offset: 0

Views

Author

Michael Somos, May 02 2015

Keywords

Examples

			G.f. = 1 + x - 10*x^3 - 80*x^4 + 17600*x^6 + 418000*x^7 - 496672000*x^9 - ...
E.g.f. = x + x^3/6 - x^7/504 - x^9/4536 + x^13/353808 + 19/59439744*x^15 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[{t = Sqrt[-1/2 - Sqrt[1/3]], m = -7 + Sqrt[48]}, SeriesCoefficient[ JacobiSN[ t x, m] / t, {x, 0, 2 n + 1}] (2 n + 1)! // Simplify]];
  • PARI
    {a(n) = my(A, c); if( n<0, 0, A = x + x^3/6; for(k=3, n, A += O(x^(2*k+2)); A = x + intformal( intformal( 2*(A'^2 - 1) / A - A)); c = polcoeff( A, 2*k + 1) * k / (k-2); A = truncate( A + O(x^(2*k))) + c * x^(2*k+1)); (2*n + 1)! * polcoeff( A, 2*n + 1))};

Formula

The e.g.f. A(x) = y satisfies 0 = 2 - 2 * y'*y' + y*y'' + y^2.
The e.g.f. A(x) satisfies 0 = A(x) * A(y) * A(x-y) + A(y) * A(z) * A(y-z) - A(x) * A(z) * A(x-z) - A(x-y) * A(x-z) * A(y-z) for all x, y, z.
E.g.f.: Sum_{k>=0} a(k) * x^(2*k+1) / (2*k+1)! = sn(t * x, m) / t where t = sqrt( -1/2 - sqrt(1/3)), m = -7 + sqrt(48), and sn() is a Jacobi elliptic function.
a(3*n + 2) = 0. a(n) = (-1)^floor(n/3) * A063902(n) unless n == 2 (mod 3).
Showing 1-3 of 3 results.