A063947 Infinitary harmonic numbers: harmonic mean of infinitary divisors is an integer.
1, 6, 45, 60, 90, 270, 420, 630, 2970, 5460, 8190, 9100, 15925, 27300, 36720, 40950, 46494, 54600, 81900, 95550, 136500, 163800, 172900, 204750, 232470, 245700, 257040, 409500, 464940, 491400, 646425, 716625, 790398, 791700, 819000, 900900
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..239 (terms below 10^10)
- P. Hagis, Jr. and G. L. Cohen, Infinitary harmonic numbers, Bull. Australian math. Soc., 41 (1990), 151-158 (Math. Rev. 91d:11001) (asymptotics).
- Eric Weisstein's World of Mathematics, Harmonic Mean
- Wikipedia, Harmonic mean
Programs
-
Haskell
import Data.Ratio (denominator) import Data.List (genericLength) a063947 n = a063947_list !! (n-1) a063947_list = filter ((== 1) . denominator . hm . a077609_row) [1..] where hm xs = genericLength xs / sum (map (recip . fromIntegral) xs) -- Reinhard Zumkeller, Jul 10 2013
-
Mathematica
bitty[ k_ ] := Union[ Flatten[ Outer[ Plus, Sequence @@ ({0, #} & /@ Union[ (2^Range[ 0, Floor[ Log[ 2, k ] ] ] ) Reverse[ IntegerDigits[ k, 2 ] ] ] ) ] ] ]; 1 + Flatten[ Position[ Table[ (Length[ # ] /(Plus @@ (1/#)) &)@ (Apply[ Times, (First[ it ] ^ (# /. z -> List)) ] & /@ Flatten[ Outer[ z, Sequence @@ (bitty /@ Last[ it = Transpose[ FactorInteger[ k ] ] ] ), 1 ] ]), {k, 2, 2^22 + 1} ], Integer ] ] (* _Robert G. Wilson v, Sep 04 2001 *)
Extensions
More terms from David W. Wilson, Sep 04 2001