A319745 Nonunitary harmonic numbers: numbers such that the harmonic mean of their nonunitary divisors is an integer.
4, 9, 12, 18, 24, 25, 45, 49, 54, 60, 112, 121, 126, 150, 168, 169, 270, 289, 294, 336, 361, 529, 560, 594, 637, 726, 841, 961, 1014, 1232, 1369, 1638, 1680, 1681, 1734, 1849, 1984, 2166, 2184, 2209, 2430, 2520, 2688, 2700, 2809, 2850, 3174, 3481, 3721, 3780
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Steve Ligh and Charles R. Wall, Functions of Nonunitary Divisors, Fibonacci Quarterly, Vol. 25 (1987), pp. 333-338.
Programs
-
Mathematica
nudiv[n_] := Block[{d = Divisors[n]}, Select[d, GCD[#, n/#] > 1 &]]; nhQ[n_]:= Module[ {divs=nudiv[n]}, Length[divs] > 0 && IntegerQ[HarmonicMean[divs]]]; Select[Range[30000], nhQ]
-
PARI
hm(v) = #v/sum(k=1, #v, 1/v[k]); vnud(n) = select(x->(gcd(x, n/x)!=1), divisors(n)); isok(n) = iferr(denominator(hm(vnud(n))) == 1, E, 0); \\ Michel Marcus, Oct 28 2018
Comments