A063949 Every number is the sum of 4 squares; these are the numbers n for which the first square can be taken to be any positive square < n.
0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 22, 25, 26, 28, 30, 33, 34, 36, 38, 41, 42, 45, 46, 49, 50, 52, 54, 57, 58, 60, 62, 65, 66, 68, 70, 73, 74, 78, 81, 82, 84, 86, 89, 90, 94, 97, 98, 100, 102, 105, 106, 110, 114, 118, 122, 126, 129, 130
Offset: 1
References
- J. H. Conway, personal communication, Aug 27, 2001.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1109 (numbers < 4000)
Programs
-
Mathematica
t1 = {1, 3, 5, 7, 9, 13, 15, 17, 21, 25, 33, 41, 45, 49, 57, 65, 73, 81, 89, 97, 105, 129, 145, 153, 169, 177, 185, 201, 209, 217, 225, 257, 273, 297, 305, 313, 329, 345, 353, 385, 425, 433, 441, 481, 513, 561, 585, 609, 689, 697, 713, 817, 825, 945}; Union[{0}, t1, 4*t1, 4*Range[0, 999] + 2] (* T. D. Noe, Feb 22 2012 *)
-
PARI
is_A063949(n)=if(bittest(n,0),is_A063951(n),n%4==2||is_A063951(n/4)||!n) \\ M. F. Hasler, Jan 26 2018
-
PARI
#A063949_vec=select( is_A063949, [0..3780]) /* or: setunion(setunion(concat(0,A063951), 4*A063951),apply(t->t-2,4*[1..945])) */
-
PARI
A063949(n)=if(n>1054,n*4-438,A063949_vec[n]) \\ M. F. Hasler, Jan 26 2018
Formula
Consists of 0, the 54 odd numbers in A063951, 4 times those numbers and all numbers of the form 4m+2.
a(n) = 4*(n-110) + 2 for all n > 1054. - M. F. Hasler, Jan 26 2018
Comments