cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063978 Sum_{i for which n - i*(i-1)/2 >= 0} binomial (n - i*(i-1)/2, i).

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 18, 27, 40, 58, 83, 118, 167, 235, 328, 454, 624, 853, 1161, 1574, 2125, 2856, 3821, 5090, 6754, 8931, 11773, 15474, 20280, 26502, 34533, 44870, 58142, 75145, 96885, 124630, 159973, 204909, 261930, 334143, 425417, 540566, 685576, 867885, 1096726, 1383545, 1742509, 2191123, 2750980
Offset: 0

Views

Author

Helmut Schnitzspan (HSchnitzspan(AT)gmx.de), Sep 05 2001

Keywords

Comments

Number of compositions n = p(1) + p(2) + ... + p(m) such that p(k)>=k-1 for k>=2, see example. - Joerg Arndt, Dec 19 2012

Examples

			From _Joerg Arndt_, Dec 19 2012: (Start)
The a(7) = 18 compositions 7 = p(1) + p(2) + ... + p(m) such that for k>=2 p(k)>=k-1 are
[ 1]  [ 1 1 2 3 ]
[ 2]  [ 1 1 5 ]
[ 3]  [ 1 2 4 ]
[ 4]  [ 1 3 3 ]
[ 5]  [ 1 4 2 ]
[ 6]  [ 1 6 ]
[ 7]  [ 2 1 4 ]
[ 8]  [ 2 2 3 ]
[ 9]  [ 2 3 2 ]
[10]  [ 2 5 ]
[11]  [ 3 1 3 ]
[12]  [ 3 2 2 ]
[13]  [ 3 4 ]
[14]  [ 4 1 2 ]
[15]  [ 4 3 ]
[16]  [ 5 2 ]
[17]  [ 6 1 ]
[18]  [ 7 ]
(End)
		

Crossrefs

Cf. A064188.
Cf. A219282 (compositions such that p(k)>=k for all k; superdiagonal bargraphs).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          add(b(n-j, i+1), j=i..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 28 2014
  • Mathematica
    Table[ Sum[ Binomial[ n - i(i - 1)/2, i], {i, 0, Floor[ (Sqrt[8n + 1] - 1)/2]} ], {n, 0, 40}]
  • PARI
    N=66; q='q+O('q^N); Vec( sum(n=1, N, q^(n*(n-1)/2) / (1-q)^n ) ) \\ Joerg Arndt, Mar 30 2014

Formula

G.f.: Sum_{k>=1} x^(k*(k-1)/2) / (1-x)^k. - Vladeta Jovovic, Sep 25 2004

Extensions

More terms from Dean Hickerson, Sep 06 2001