A063988 Triangle in which n-th row gives quadratic non-residues modulo the n-th prime.
2, 2, 3, 3, 5, 6, 2, 6, 7, 8, 10, 2, 5, 6, 7, 8, 11, 3, 5, 6, 7, 10, 11, 12, 14, 2, 3, 8, 10, 12, 13, 14, 15, 18, 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22, 2, 3, 8, 10, 11, 12, 14, 15, 17, 18, 19, 21, 26, 27, 3, 6, 11, 12, 13, 15, 17, 21, 22, 23, 24, 26, 27, 29, 30, 2, 5, 6, 8, 13, 14
Offset: 2
Examples
Mod the 5th prime, 11, the quadratic residues are 1,3,4,5,9 and the non-residues are 2,6,7,8,10. Triangle begins: 2; 2, 3; 3, 5, 6; 2, 6, 7, 8, 10; ...
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 82 at p. 202.
Links
- T. D. Noe, Rows n=2..100 of triangle, flattened
Crossrefs
Cf. A063987.
Programs
-
Maple
with(numtheory): for n from 1 to 20 do for j from 1 to ithprime(n)-1 do if legendre(j, ithprime(n)) = -1 then printf(`%d,`,j) fi; od: od:
-
Mathematica
row[n_] := Select[p = Prime[n]; Range[p - 1], JacobiSymbol[#, p] == -1 &]; Table[row[n], {n, 2, 12}] // Flatten (* Jean-François Alcover, Oct 17 2012 *)
-
PARI
residue(n,m)={local(r);r=0;for(i=0,floor(m/2),if(i^2%m==n,r=1));r} isA063988(n,m)=!residue(n,prime(m)) \\ Michael B. Porter, May 07 2010
-
PARI
tabf(nn) = {for(n=1, prime(nn), p = prime(n); for (i=2, p-1, if (kronecker(i, p) == -1, print1(i, ", "));); print(););} \\ Michel Marcus, Jul 19 2013
-
Python
from sympy import jacobi_symbol as J, prime def a(n): p=prime(n) return [i for i in range(1, p) if J(i, p)==-1] print([a(n) for n in range(2, 13)]) # Indranil Ghosh, May 27 2017
Extensions
More terms from James Sellers, Sep 25 2001