A064000 Unitary untouchable numbers of second kind: numbers n such that usigma(x) = n has no solution, where usigma(x) (A034448) is the sum of unitary divisors of x.
2, 7, 11, 13, 15, 16, 19, 21, 22, 23, 25, 27, 29, 31, 34, 35, 37, 39, 41, 43, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 66, 67, 69, 71, 73, 75, 76, 77, 79, 81, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 101, 103, 105, 106, 107, 109, 111, 113, 115, 116
Offset: 1
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
- Carl Pomerance and Hee-Sung Yang, On untouchable numbers and related problems, 2012.
- Carl Pomerance and Hee-Sung Yang, Variant of a theorem of Erdős on the sum-of-proper-divisors function, Mathematics of Computation, Vol. 83, No. 288 (2014), pp. 1903-1913; alternative link.
Programs
-
Mathematica
usigma[n_] := Sum[ Boole[GCD[d, n/d] == 1]*d, {d, Divisors[n]}]; untouchableQ[n_] := (r = True; x = 1; While[x <= n, If[usigma[x] == n, r = False; Break[], x++]]; r); Select[Range[120], untouchableQ] (* Jean-François Alcover, Jan 03 2013 *)
-
PARI
usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);} lista(kmax) = {my(v = vector(kmax), s); for(k = 1, kmax, s = usigma(k); if(s <= kmax, v[s]++)); for(k = 1, kmax, if(v[k] == 0, print1(k, ", ")))}; \\ Amiram Eldar, Jun 09 2024
Formula
Suppose usigma(x) = n. Then by definition usigma(x) = n > 1 for n > 1. Let x be a prime. Then usigma(x) = x+1 and so n = x+1. For x not prime, of course, x+1 < n. So in general x <= n-1.
Extensions
Edited by N. J. A. Sloane, May 04 2007