cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A063976 Duplicate of A064000.

Original entry on oeis.org

2, 7, 11, 13, 15, 16, 19, 21, 22, 23, 25, 27, 29, 31, 34, 35, 37, 39, 41, 43, 45, 46, 47, 49
Offset: 1

Views

Author

Keywords

A034448 usigma(n) = sum of unitary divisors of n (divisors d such that gcd(d, n/d)=1); also called UnitarySigma(n).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 36, 26, 42, 28, 40, 30, 72, 32, 33, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68, 90, 96, 144
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Row sums of the triangle in A077610. - Reinhard Zumkeller, Feb 12 2002
Multiplicative with a(p^e) = p^e+1 for e>0. - Franklin T. Adams-Watters, Sep 11 2005

Examples

			Unitary divisors of 12 are 1, 3, 4, 12. Or, 12=3*2^2 hence usigma(12)=(3+1)*(2^2+1)=20.
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Programs

  • Haskell
    a034448 = sum . a077610_row  -- Reinhard Zumkeller, Feb 12 2012
    (Python 3.8+)
    from math import prod
    from sympy import factorint
    def A034448(n): return prod(p**e+1 for p, e in factorint(n).items()) # Chai Wah Wu, Jun 20 2021
  • Maple
    A034448 := proc(n) local ans, i:ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ][ 1 ]^ifactors(n)[ 2 ] [ i ] [ 2 ]): od: RETURN(ans) end:
    a := proc(n) local i; numtheory[divisors](n); select(d -> igcd(d,n/d)=1, %); add(i,i=%) end; # Peter Luschny, May 03 2009
  • Mathematica
    usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; Table[ usigma[n], {n, 71}] (* Robert G. Wilson v, Aug 28 2004 *)
    Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &], {n, 70}] (* Michael De Vlieger, Mar 01 2017 *)
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; Array[usigma, 100] (* faster since avoids generating divisors, Giovanni Resta, Apr 23 2017 *)
  • PARI
    A034448(n)=sumdiv(n,d,if(gcd(d,n/d)==1,d)) \\ Rick L. Shepherd
    
  • PARI
    A034448(n) = {my(f=factorint(n)); prod(k=1, #f[,2], f[k,1]^f[k,2]+1)} \\ Andrew Lelechenko, Apr 22 2014
    
  • PARI
    a(n)=sumdivmult(n,d,if(gcd(d,n/d)==1,d)) \\ Charles R Greathouse IV, Sep 09 2014
    

Formula

If n = Product p_i^e_i, usigma(n) = Product (p_i^e_i + 1). - Vladeta Jovovic, Apr 19 2001
Dirichlet generating function: zeta(s)*zeta(s-1)/zeta(2s-1). - Franklin T. Adams-Watters, Sep 11 2005
Conjecture: a(n) = sigma(n^2/rad(n))/sigma(n/rad(n)), where sigma = A000203 and rad = A007947. - Velin Yanev, Aug 20 2017
This conjecture is easily verified since all the functions involved are multiplicative and proving it for prime powers is straightforward. - Juan José Alba González, Mar 19 2021
From Amiram Eldar, May 29 2020: (Start)
Sum_{d|n, gcd(d, n/d) = 1} a(d) * (-1)^omega(n/d) = n.
a(n) <= sigma(n) = A000203(n), with equality if and only if n is squarefree (A005117). (End)
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (12*zeta(3)). - Vaclav Kotesovec, May 20 2021
a(n) = uphi(n^2)/uphi(n) = A191414(n)/uphi(n), where uphi(n) = A047994(n). - Amiram Eldar, Sep 21 2024

Extensions

More terms from Erich Friedman

A005114 Untouchable numbers, also called nonaliquot numbers: impossible values for the sum of aliquot parts function (A001065).

Original entry on oeis.org

2, 5, 52, 88, 96, 120, 124, 146, 162, 188, 206, 210, 216, 238, 246, 248, 262, 268, 276, 288, 290, 292, 304, 306, 322, 324, 326, 336, 342, 372, 406, 408, 426, 430, 448, 472, 474, 498, 516, 518, 520, 530, 540, 552, 556, 562, 576, 584, 612, 624, 626, 628, 658
Offset: 1

Views

Author

Keywords

Comments

Complement of A078923. - Lekraj Beedassy, Jul 19 2005
Chen & Zhao show that the lower density of this sequence is at least 0.06, improving on te Riele. - Charles R Greathouse IV, Dec 28 2013
Numbers k such that A048138(k) = 0. A048138(k) measures how "touchable" k is. - Jeppe Stig Nielsen, Jan 12 2020
From Amiram Eldar, Feb 13 2021: (Start)
The term "untouchable number" was coined by Alanen (1972). He found the 570 terms below 5000.
Erdős (1973) proved that the lower asymptotic density of untouchable numbers is positive, te Riele (1976) proved that it is > 0.0324, and Banks and Luca (2004, 2005) proved that it is > 1/48.
Pollack and Pomerance (2016) conjectured that the asymptotic density is ~ 0.17. (End)
The upper asymptotic density is less than 1/2 by the 'almost all' binary Goldbach conjecture, independently proved by Nikolai Chudakov, Johannes van der Corput, and Theodor Estermann. (In this context, this shows that the density of the odd numbers of this form is 0 (consider A001065(p*q) for prime p, q); full Goldbach would prove that 5 is the only odd number in this sequence.) - Charles R Greathouse IV, Dec 05 2022

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004, section B10, pp. 100-101.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 65.
  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 93.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 125.

Crossrefs

Programs

  • Mathematica
    untouchableQ[n_] := Catch[ Do[ If[n == DivisorSigma[1, k]-k, Throw[True]], {k, 0, (n-1)^2}]] === Null; Reap[ Table[ If[ untouchableQ[n], Print[n]; Sow[n]], {n, 2, 700}]][[2, 1]] (* Jean-François Alcover, Jun 29 2012, after Benoit Cloitre *)
  • PARI
    isA078923(n)=if(n==0 || n==1, return(1)); for(m=1,(n-1)^2, if( sigma(m)-m == n, return(1))); 0
    isA005114(n)=!isA078923(n)
    for(n=1,700, if (isA005114(n), print(n))) \\ R. J. Mathar, Aug 10 2006
    
  • PARI
    is(n)=if(n%2 && n<4e18, return(n==5)); forfactored(m=1,(n-1)^2, if(sigma(m)-m[1]==n, return(0))); 1 \\ Charles R Greathouse IV, Dec 05 2022
    
  • Python
    from sympy import divisor_sigma as sigma
    from functools import cache
    @cache
    def f(m): return sigma(m)-m
    def okA005114(n):
        if n < 2: return 0
        return not any(f(m) == n for m in range(1, (n-1)**2+1))
    print([k for k in range(289) if okA005114(k)]) # Michael S. Branicky, Nov 16 2024
    
  • Python
    # faster for intial segment of sequence
    from itertools import count, islice
    from sympy import divisor_sigma as sigma
    def agen(): # generator of terms
        n, touchable, t = 2, {0, 1}, 1
        for m in count(2):
            touchable.add(sigma(m)-m)
            while m > t:
                if n not in touchable:
                    yield n
                else:
                    touchable.discard(n)
                n += 1
                t = (n-1)**2
    print(list(islice(agen(), 20))) # Michael S. Branicky, Nov 16 2024

Extensions

More terms from David W. Wilson

A063948 Unitary untouchable numbers: us(x) = n has no solution where us(x) (A063919) is the sum of the proper unitary divisors of x.

Original entry on oeis.org

2, 3, 4, 5, 7, 374, 702, 758, 998, 1542, 1598, 1778, 1808, 1830, 1974, 2378, 2430, 2910, 3164, 3182, 3188, 3216, 3506, 3540, 3666, 3698, 3818, 3846, 3986, 4196, 4230, 4574, 4718, 4782, 5126, 5324, 5610, 5738, 5918, 5952, 6002, 6174, 6270, 6404, 6450, 6510
Offset: 1

Views

Author

Felice Russo, Sep 04 2001

Keywords

Comments

Pomerance & Yang show that this sequence has positive lower density (in fact, greater than 10^-7) and upper density at most 0.40632. - Charles R Greathouse IV, Dec 28 2013

Crossrefs

Programs

  • Mathematica
    us[x_] := us[x] = Total[ Select[ Divisors[x], GCD[#, x/#] == 1 &]] - x; us[1] = 1; usQ[n_] := With[{xm = Ceiling[n^2/4]}, Catch[ Do[ If[us[x] == n, Throw[True]]; If[x == xm, Throw[False]], {x, 1, xm}]]]; A063948 = Reap[ Do[ If[ !usQ[n], Print[n]; Sow[n]], {n, 1, 6600}]][[2, 1]] (* Jean-François Alcover, Jun 22 2012 *)

Formula

If us(x) = n > 1, then n^2 - 4x >= 0. - Dean Hickerson, Sep 04 2001.

Extensions

More terms from David W. Wilson, Sep 05 2001

A063977 Numbers which are sums of unitary divisors, the usigma values: their inverse usigma set is not empty; usigma() = A034448().

Original entry on oeis.org

1, 3, 4, 5, 6, 8, 9, 10, 12, 14, 17, 18, 20, 24, 26, 28, 30, 32, 33, 36, 38, 40, 42, 44, 48, 50, 54, 56, 60, 62, 65, 68, 70, 72, 74, 78, 80, 82, 84, 90, 96, 98, 100, 102, 104, 108, 110, 112, 114, 120, 122, 126, 128, 129, 130, 132, 136, 138, 140, 144, 150, 152, 158
Offset: 1

Views

Author

Labos Elemer, Sep 05 2001

Keywords

Crossrefs

Cf. A034448, A064000 (complement).

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; seq[max_] := TakeWhile[Union[Array[usigma, max]], # <= max &]; seq[160] (* Amiram Eldar, Jul 22 2024 *)
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    lista(nmax) = Set(select(x -> x <= nmax, vector(nmax, i, usigma(i)))); \\ Amiram Eldar, Jul 22 2024

A291109 Numbers that are not the sum of the squarefree divisors of some natural number.

Original entry on oeis.org

2, 5, 7, 9, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 65, 66, 67, 69, 70, 71, 73, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 100, 101, 103, 105, 106, 107, 109, 111
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 17 2017

Keywords

Comments

Impossible values for A048250 (numbers k in increasing order such that A048250(m) = k has no solution).
Numbers that are not of the form Product (p_i + 1), p is a prime, so all odd numbers (except 1 and 3) are in this sequence.
Also numbers that are not the sum of the divisors of some squarefree number.

Crossrefs

Programs

  • Maple
    sort(convert({$1..1000} minus map(numtheory:-sigma, select(numtheory:-issqrfree, {$1..1000})),list)); # Robert Israel, Jun 26 2018
  • Mathematica
    TakeWhile[Complement[Range@ #, Union@ Table[Total@ Select[Divisors@ n, SquareFreeQ], {n, 2 #}]], Function[k, k <= #]] &@ 111

A332739 Numbers k such that usigma(x) = k has a unique solution, where usigma(k) is the sum of unitary divisors of k (A034448).

Original entry on oeis.org

1, 3, 4, 5, 6, 8, 9, 10, 14, 17, 26, 28, 33, 38, 40, 44, 56, 62, 65, 70, 74, 78, 82, 98, 100, 110, 112, 122, 129, 130, 136, 138, 158, 164, 174, 176, 182, 186, 190, 194, 208, 210, 212, 220, 222, 230, 238, 242, 244, 246, 248, 250, 256, 257, 258, 278, 282, 284, 290
Offset: 1

Views

Author

Amiram Eldar, Feb 21 2020

Keywords

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); m = 300; v = Table[ 0, {m}]; Do[u = usigma[k]; If[u <= m, v[[u]]++], {k, 1, m}]; Position[v, _?(# == 1 &)]//Flatten
Showing 1-7 of 7 results.