cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 352 results. Next

A034460 a(n) = usigma(n) - n, where usigma(n) = sum of unitary divisors of n (A034448).

Original entry on oeis.org

0, 1, 1, 1, 1, 6, 1, 1, 1, 8, 1, 8, 1, 10, 9, 1, 1, 12, 1, 10, 11, 14, 1, 12, 1, 16, 1, 12, 1, 42, 1, 1, 15, 20, 13, 14, 1, 22, 17, 14, 1, 54, 1, 16, 15, 26, 1, 20, 1, 28, 21, 18, 1, 30, 17, 16, 23, 32, 1, 60, 1, 34, 17, 1, 19, 78, 1, 22, 27, 74, 1, 18, 1, 40, 29, 24, 19, 90, 1, 22, 1, 44
Offset: 1

Views

Author

Keywords

Examples

			Unitary divisors of 12 are 1, 3, 4, 12. a(12) = 1 + 3 + 4 = 8.
		

Crossrefs

Cf. A063936 (squares > 1).
Cf. A063919 (essentially the same sequence).

Programs

  • Haskell
    a034460 = sum . init . a077610_row  -- Reinhard Zumkeller, Aug 15 2012
    
  • Maple
    A034460 := proc(n)
        A034448(n)-n ;
    end proc:
    seq(A034460(n),n=1..40) ; # R. J. Mathar, Nov 10 2014
  • Mathematica
    usigma[n_] := Sum[ If[GCD[d, n/d] == 1, d, 0], {d, Divisors[n]}]; a[n_] := usigma[n] - n; Table[ a[n], {n, 1, 82}] (* Jean-François Alcover, May 15 2012 *)
    a[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n; a[1] = 0; Array[a, 100] (* Amiram Eldar, Oct 03 2022 *)
  • PARI
    a(n)=sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n \\ Charles R Greathouse IV, Aug 01 2016

Formula

a(n) = Sum_{k = 1..A034444(n)-1} A077610(n,k). - Reinhard Zumkeller, Aug 15 2012
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/zeta(3) - 1)/2 = 0.1842163888... . - Amiram Eldar, Feb 22 2024

A064125 Numbers k such that k and k+1 have the same sum of unitary divisors (A034448).

Original entry on oeis.org

14, 44, 55, 152, 957, 1334, 1400, 1634, 1652, 2204, 2232, 2295, 2685, 3195, 3451, 3956, 4256, 5547, 7191, 8216, 8495, 8636, 8907, 9144, 9503, 9844, 10152, 11515, 17255, 18423, 19491, 20145, 20155, 27404, 27643, 30247, 33998, 38180, 41265
Offset: 1

Views

Author

Jason Earls, Sep 10 2001

Keywords

Programs

  • PARI
    usigma(n,s=1,fac,i)=fac=factor(n); for(i=1,matsize(fac)[1], s=s*(1+fac[i,1]^fac[i,2])); return(s); j=[]; for(n=1,50000, if(usigma(n)==usigma(n+1),j=concat(j,n))); j
    
  • PARI
    usigma(n)= { local(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) }
    { n=0; s=0; for (m=1, 10^9, us=usigma(m+1); if(s==us, write("b064125.txt", n++, " ", m); if (n==800, break)); s=us ) } \\ Harry J. Smith, Sep 08 2009

A325813 a(n) = gcd(A034448(n)-n, n-A048146(n)), where A034448 and A048146 are respectively the sum of unitary and non-unitary divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 12, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 7, 3, 6, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 12, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 21, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 23 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A034460(n), A325814(n)).

A325973 Arithmetic mean of {sum of unitary divisors} and {sum of squarefree divisors}: a(n) = (1/2) * (A034448(n) + A048250(n)).

Original entry on oeis.org

1, 3, 4, 4, 6, 12, 8, 6, 7, 18, 12, 16, 14, 24, 24, 10, 18, 21, 20, 24, 32, 36, 24, 24, 16, 42, 16, 32, 30, 72, 32, 18, 48, 54, 48, 31, 38, 60, 56, 36, 42, 96, 44, 48, 42, 72, 48, 40, 29, 48, 72, 56, 54, 48, 72, 48, 80, 90, 60, 96, 62, 96, 56, 34, 84, 144, 68, 72, 96, 144, 72, 51, 74, 114, 64, 80, 96, 168, 80, 60, 43, 126
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

This is not multiplicative: a(4) = 4, a(9) = 7, but a(36) = 31, not 28. However, the function acts multiplicatively on certain subsequences of natural numbers, like for example when restricted to A048107, where this sequence coincides with A326043.

Examples

			For n = 36, its divisors are 1, 2, 3, 4, 6, 9, 12, 18, 36. Of these, unitary divisors are 1, 4, 9 and 36, so A034448(36) = 1+4+9+36 = 50, while the squarefree divisors are 1, 2, 3 and 6, so A048250(36) = 1+2+3+6 = 12, thus a(36) = (50+12)/2 = 31.
For n = 495, its divisors are 1, 3, 5, 9, 11, 15, 33, 45, 55, 99, 165, 495. Of these, unitary are 1, 5, 9, 11, 45, 55, 99, 495, whose sum is A034448(495) = 720, while the squarefree divisors are 1, 3, 5, 11, 15, 33, 55, 165, and their sum is A048250(495) = 288. Thus a(495) = (720+288)/2 = 504. Also for 495, whose prime factorization is 3^2 * 5^1 * 11^1 this can be computed faster as the average of ((3^2)+1)*(5+1)*(11+1) and (3+1)*(5+1)*(11+1), thus (1/2)*(3+(3^2)+2)*(5+1)*(11+1) = 504.
		

Crossrefs

Programs

Formula

a(n) = (1/2) * (A034448(n) + A048250(n)).
a(n) = A000203(n) - A325974(n).
a(n) = n + A325977(n).
a(A048107(n)) = A326043(A048107(n)).
For n >= 1, a(2^n) = A052548(n-1) = 2^(n-1) + 2.
For n >= 1, a(3^n) = A289521(n) = (3^n + 5)/2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/zeta(3) + 1)/4 = 0.5921081944... . - Amiram Eldar, Feb 22 2024

A064611 Partial sum of usigma is divisible by n, where usigma(n) = A034448(n) and summatory-usigma(n) = A064609(n).

Original entry on oeis.org

1, 2, 8, 11, 12, 174, 212, 524, 1567, 14096, 19795, 38466, 42114, 55575, 338809, 498001, 1175281, 2424880, 3994532, 7908519, 48453784, 696840720, 5497869355, 7479239685
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056550, A064605-A064607, A064610, A064612, A048290, A062982, A045345.

Examples

			udivisor sums[=usigma(j) values] from 1 to 8 are added: 1+3+4+5+6+12+8+9=48; it is divisible by 8, thus 8 is here.
		

Crossrefs

Programs

  • Mathematica
    s = Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &], {n, 10^6}]; Module[{a = First@ s, b = {First@ s}}, Do[a += s[[i]]; If[Divisible[a, i], AppendTo[b, i]], {i, 2, Length@ s}]; b] (* Michael De Vlieger, Mar 18 2017 *)

Formula

A064609(n) mod n = 0.

Extensions

a(17)-a(22) from Donovan Johnson, Jul 20 2012
a(23)-a(24) from Amiram Eldar, Mar 17 2019

A064609 Partial sums of A034448: sum of unitary divisors from 1 to n.

Original entry on oeis.org

1, 4, 8, 13, 19, 31, 39, 48, 58, 76, 88, 108, 122, 146, 170, 187, 205, 235, 255, 285, 317, 353, 377, 413, 439, 481, 509, 549, 579, 651, 683, 716, 764, 818, 866, 916, 954, 1014, 1070, 1124, 1166, 1262, 1306, 1366, 1426, 1498, 1546, 1614, 1664, 1742, 1814, 1884
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate@ Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &], {n, 52}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    usigma(n)= { local(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) }
    { a=0; for (n=1, 1000, a+=usigma(n); write("b064609.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 20 2009
    
  • Python
    from sympy.ntheory.factor_ import udivisor_sigma
    def a(n): return sum(udivisor_sigma(j,1) for j in range(1,n + 1))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Mar 18 2017

Formula

a(n) = a(n-1) + A034448(n) = Sum_{j=1..n} usigma(j) where usigma(j) = A034448(j).
a(n) ~ Pi^2 * n^2 / (12*Zeta(3)). - Vaclav Kotesovec, Jan 11 2019

A323166 Greatest common divisor of Product (1+(p_i^e_i)) and n, when n = Product (p_i^e_i); a(n) = gcd(A034448(n), n).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 6, 1, 10, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 4, 15, 2, 1, 4, 1, 2, 3, 2, 1, 6, 1, 8, 1, 2, 1, 60, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 18, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 90, 7, 4, 1, 2, 5, 12, 1, 2, 3, 10, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(n, A034448(n)), where A034448 is usigma, the sum of unitary divisors of n.

A285614 Unitary highly abundant numbers: numbers n such that usigma(n) > usigma(m) for all m < n, where usigma(n) = sum of unitary divisors of n (A034448).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 10, 12, 14, 18, 21, 22, 26, 30, 42, 60, 66, 78, 90, 102, 114, 130, 138, 150, 170, 174, 186, 210, 294, 318, 330, 390, 462, 510, 546, 570, 690, 798, 858, 870, 930, 1050, 1110, 1218, 1230, 1290, 1410, 1470, 1554, 1590, 1722, 1770, 1830, 1974
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2017

Keywords

Comments

Corresponds to A002093 (Highly abundant numbers), with usigma(n) = sum of unitary divisors of n (divisors d such that gcd(d, n/d)=1, A034448) instead of sigma(n) (sum of divisors, A000203).
Contains many terms of A280013 (sum of squarefree divisors instead of unitary divisors), but not all of them - the first terms of A280013 that are not in this sequence are 16530, 26070, 8734110, 8757210,...

Examples

			The first 9 values of usigma(n) for n=1..9 are: 1, 3, 4, 5, 6, 12, 8, 9, 10. usigma(10)=18 is higher than these 9 values, thus 10 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; a = {}; k = 0; Do[s = usigma[n]; If[s > k, AppendTo[a, n]; k = s], {n, 1000}]; a

A327158 Unitary multiply-perfect numbers: n divides usigma(n), where usigma is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

1, 6, 60, 90, 87360
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2019

Keywords

Comments

10^13 < a(6) <= 146361946186458562560000. - Giovanni Resta, Aug 29 2019

Crossrefs

Fixed points of A323166, positions of zeros in A327164.
Cf. A002827 (a subsequence), A034448, A327163.
Cf. also A007691.

Programs

  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    isA327158(n) = (gcd(n,A034448(n))==n);

A063974 Number of terms in inverse set of usigma = sum of unitary divisors = A034448.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 0, 1, 0, 0, 1, 2, 0, 2, 0, 0, 0, 3, 0, 1, 0, 1, 0, 3, 0, 2, 1, 0, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 3, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 0, 4, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 0, 6, 0, 1, 0, 0, 0, 1, 0, 3, 0, 1, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 1, 0, 1, 0, 2, 0, 2, 0
Offset: 1

Views

Author

Labos Elemer, Sep 05 2001

Keywords

Examples

			usigma(x) = 288, invusigma(288) = {138,154,165,168,213,235,248,253}, so a(288) = 8, the number of all terms in the inverse set.
		

Crossrefs

Formula

Size of set {x; usigma(x) = n}.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A308041. - Amiram Eldar, Dec 23 2024
Showing 1-10 of 352 results. Next