cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A064611 Partial sum of usigma is divisible by n, where usigma(n) = A034448(n) and summatory-usigma(n) = A064609(n).

Original entry on oeis.org

1, 2, 8, 11, 12, 174, 212, 524, 1567, 14096, 19795, 38466, 42114, 55575, 338809, 498001, 1175281, 2424880, 3994532, 7908519, 48453784, 696840720, 5497869355, 7479239685
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056550, A064605-A064607, A064610, A064612, A048290, A062982, A045345.

Examples

			udivisor sums[=usigma(j) values] from 1 to 8 are added: 1+3+4+5+6+12+8+9=48; it is divisible by 8, thus 8 is here.
		

Crossrefs

Programs

  • Mathematica
    s = Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &], {n, 10^6}]; Module[{a = First@ s, b = {First@ s}}, Do[a += s[[i]]; If[Divisible[a, i], AppendTo[b, i]], {i, 2, Length@ s}]; b] (* Michael De Vlieger, Mar 18 2017 *)

Formula

A064609(n) mod n = 0.

Extensions

a(17)-a(22) from Donovan Johnson, Jul 20 2012
a(23)-a(24) from Amiram Eldar, Mar 17 2019

A034448 usigma(n) = sum of unitary divisors of n (divisors d such that gcd(d, n/d)=1); also called UnitarySigma(n).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 36, 26, 42, 28, 40, 30, 72, 32, 33, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68, 90, 96, 144
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Row sums of the triangle in A077610. - Reinhard Zumkeller, Feb 12 2002
Multiplicative with a(p^e) = p^e+1 for e>0. - Franklin T. Adams-Watters, Sep 11 2005

Examples

			Unitary divisors of 12 are 1, 3, 4, 12. Or, 12=3*2^2 hence usigma(12)=(3+1)*(2^2+1)=20.
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Programs

  • Haskell
    a034448 = sum . a077610_row  -- Reinhard Zumkeller, Feb 12 2012
    (Python 3.8+)
    from math import prod
    from sympy import factorint
    def A034448(n): return prod(p**e+1 for p, e in factorint(n).items()) # Chai Wah Wu, Jun 20 2021
  • Maple
    A034448 := proc(n) local ans, i:ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ][ 1 ]^ifactors(n)[ 2 ] [ i ] [ 2 ]): od: RETURN(ans) end:
    a := proc(n) local i; numtheory[divisors](n); select(d -> igcd(d,n/d)=1, %); add(i,i=%) end; # Peter Luschny, May 03 2009
  • Mathematica
    usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; Table[ usigma[n], {n, 71}] (* Robert G. Wilson v, Aug 28 2004 *)
    Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &], {n, 70}] (* Michael De Vlieger, Mar 01 2017 *)
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; Array[usigma, 100] (* faster since avoids generating divisors, Giovanni Resta, Apr 23 2017 *)
  • PARI
    A034448(n)=sumdiv(n,d,if(gcd(d,n/d)==1,d)) \\ Rick L. Shepherd
    
  • PARI
    A034448(n) = {my(f=factorint(n)); prod(k=1, #f[,2], f[k,1]^f[k,2]+1)} \\ Andrew Lelechenko, Apr 22 2014
    
  • PARI
    a(n)=sumdivmult(n,d,if(gcd(d,n/d)==1,d)) \\ Charles R Greathouse IV, Sep 09 2014
    

Formula

If n = Product p_i^e_i, usigma(n) = Product (p_i^e_i + 1). - Vladeta Jovovic, Apr 19 2001
Dirichlet generating function: zeta(s)*zeta(s-1)/zeta(2s-1). - Franklin T. Adams-Watters, Sep 11 2005
Conjecture: a(n) = sigma(n^2/rad(n))/sigma(n/rad(n)), where sigma = A000203 and rad = A007947. - Velin Yanev, Aug 20 2017
This conjecture is easily verified since all the functions involved are multiplicative and proving it for prime powers is straightforward. - Juan José Alba González, Mar 19 2021
From Amiram Eldar, May 29 2020: (Start)
Sum_{d|n, gcd(d, n/d) = 1} a(d) * (-1)^omega(n/d) = n.
a(n) <= sigma(n) = A000203(n), with equality if and only if n is squarefree (A005117). (End)
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (12*zeta(3)). - Vaclav Kotesovec, May 20 2021
a(n) = uphi(n^2)/uphi(n) = A191414(n)/uphi(n), where uphi(n) = A047994(n). - Amiram Eldar, Sep 21 2024

Extensions

More terms from Erich Friedman

A307159 Partial sums of the bi-unitary divisors sum function: Sum_{k=1..n} bsigma(k), where bsigma is A188999.

Original entry on oeis.org

1, 4, 8, 13, 19, 31, 39, 54, 64, 82, 94, 114, 128, 152, 176, 203, 221, 251, 271, 301, 333, 369, 393, 453, 479, 521, 561, 601, 631, 703, 735, 798, 846, 900, 948, 998, 1036, 1096, 1152, 1242, 1284, 1380, 1424, 1484, 1544, 1616, 1664, 1772, 1822, 1900, 1972, 2042
Offset: 1

Views

Author

Amiram Eldar, Mar 27 2019

Keywords

References

  • D. Suryanarayana and M. V. Subbarao, Arithmetical functions associated with the biunitary k-ary divisors of an integer, Indian J. Math., Vol. 22 (1980), pp. 281-298.

Crossrefs

Programs

  • Mathematica
    fun[p_,e_] := If[OddQ[e],(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); Accumulate[Array[bsigma, 60]]

Formula

a(n) ~ c * n^2, where c = (zeta(2)*zeta(3)/2) * Product_{p}(1 - 2/p^3 + 1/p^4 + 1/p^5 - 1/p^6) (A307160).

A370898 Partial alternating sums of the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, -2, 2, -3, 3, -9, -1, -10, 0, -18, -6, -26, -12, -36, -12, -29, -11, -41, -21, -51, -19, -55, -31, -67, -41, -83, -55, -95, -65, -137, -105, -138, -90, -144, -96, -146, -108, -168, -112, -166, -124, -220, -176, -236, -176, -248, -200, -268, -218, -296, -224, -294, -240, -324, -252, -324, -244, -334, -274, -394
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Similar sequences: A068762, A068773, A307704, A357817, A362028.

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Accumulate[Array[(-1)^(# + 1) * usigma[#] &, 100]]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * usigma(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} (-1)^(k+1) * A034448(k).
a(n) = -c * n^2 + O(n * log(n)^(5/3)), where c = Pi^2/(84*zeta(3)) = 0.0977451984014... (Tóth, 2017).

A307042 Partial sums of the exponential divisors sum function: Sum_{k=1..n} esigma(k), where esigma is A051377.

Original entry on oeis.org

1, 3, 6, 12, 17, 23, 30, 40, 52, 62, 73, 91, 104, 118, 133, 155, 172, 196, 215, 245, 266, 288, 311, 341, 371, 397, 427, 469, 498, 528, 559, 593, 626, 660, 695, 767, 804, 842, 881, 931, 972, 1014, 1057, 1123, 1183, 1229, 1276, 1342, 1398, 1458, 1509, 1587, 1640
Offset: 1

Views

Author

Amiram Eldar, Mar 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[ First[#]^d, {d, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; Accumulate[Array[esigma, 60]] (* after Jean-François Alcover at A051377 *)

Formula

a(n) ~ B * n^2, where B = 0.5682854937... (A275480).

A074789 Partial sums of usigma(n)^2: square of the sum of unitary divisors of n.

Original entry on oeis.org

1, 10, 26, 51, 87, 231, 295, 376, 476, 800, 944, 1344, 1540, 2116, 2692, 2981, 3305, 4205, 4605, 5505, 6529, 7825, 8401, 9697, 10373, 12137, 12921, 14521, 15421, 20605, 21629, 22718, 25022, 27938, 30242, 32742, 34186, 37786, 40922, 43838
Offset: 1

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &]^2, {n, 1, 50}]] (* Vaclav Kotesovec, Feb 04 2019 *)
  • PARI
    A034448(n) = {my(f = factor(n)); prod(i=1, #f~, 1 + f[i, 1]^f[i, 2]);}
    lista(nmax) = {my(s = 0); for(n = 1, nmax, s += A034448(n)^2; print1(s, ", "));} \\ Amiram Eldar, Jul 24 2024

Formula

a(n) = Sum_{k=1..n} usigma(k)^2 = Sum_{k=1..n} A034448(k)^2.
Asymptotic expression: a(n) = Sum_{k<=n} usigma(k)^2 = (zeta(2)*zeta(3)*alpha_1/3)*n^3 + O(n^2*log(n)^4), alpha_1 = Product_{p prime} (1+1/p^2-2/p^3-1/p^4-2/p^5+3/p^6), zeta(2) = A013661 and zeta(3) = A002117.
alpha_1 = 1.001619936509160661474009830789... . - Amiram Eldar, Jul 24 2024

A379513 Numerators of the partial sums of the reciprocals of the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, 4, 19, 107, 39, 61, 259, 817, 853, 97, 301, 307, 2209, 187, 2279, 39583, 121129, 122557, 124699, 126127, 509863, 171541, 173921, 526523, 6930479, 6983519, 7063079, 7118771, 7193027, 802663, 405199, 13495327, 1131701, 30726097, 123670153, 622026437, 11910394103
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2024

Keywords

Examples

			Fractions begin with 1, 4/3, 19/12, 107/60, 39/20, 61/30, 259/120, 817/360, 853/360, 97/40, 301/120, 307/120, ...
		

Crossrefs

Cf. A034448, A064609, A370898, A379514 (denominators), A379515.

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Numerator[Accumulate[Table[1/usigma[n], {n, 1, 50}]]]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / usigma(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A034448(k)).
a(n)/A379514(n) = B * log(n) + D + O(log(n)^(5/3) * log(log(n))^(4/3) / n), where B = A308041, D = B * (gamma + A1 - A2), gamma = A001620, A1 = Sum_{p prime} ((p*C(p)*log(p)/(p-1)) * Sum_{k>=1} (k/(p^k*(p^(k+1)+1)))), A2 = Sum_{p prime} ((C(p)*log(p)/p^2) * Sum_{k>=0} (1/(p^k*(p^(k+1)+1)))), and C(p) = 1 - (p/(p-1)) * Sum_{k>=1} (1/(p^k*(p^(k+1)+1))) (Sita Ramaiah and Suryanarayana, 1980).

A379514 Denominators of the partial sums of the reciprocals of the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, 3, 12, 60, 20, 30, 120, 360, 360, 40, 120, 120, 840, 70, 840, 14280, 42840, 42840, 42840, 42840, 171360, 57120, 57120, 171360, 2227680, 2227680, 2227680, 2227680, 2227680, 247520, 123760, 4084080, 340340, 9189180, 36756720, 183783600, 3491888400, 3491888400
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2024

Keywords

Crossrefs

Cf. A034448, A064609, A370898, A379513 (numerators), A379516.

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Denominator[Accumulate[Table[1/usigma[n], {n, 1, 50}]]]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / usigma(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A034448(k)).

A327566 Partial sums of the infinitary divisors sum function: a(n) = Sum_{k=1..n} isigma(k), where isigma is A049417.

Original entry on oeis.org

1, 4, 8, 13, 19, 31, 39, 54, 64, 82, 94, 114, 128, 152, 176, 193, 211, 241, 261, 291, 323, 359, 383, 443, 469, 511, 551, 591, 621, 693, 725, 776, 824, 878, 926, 976, 1014, 1074, 1130, 1220, 1262, 1358, 1402, 1462, 1522, 1594, 1642, 1710, 1760, 1838, 1910, 1980
Offset: 1

Views

Author

Amiram Eldar, Sep 17 2019

Keywords

Comments

Differs from A307159 at n >= 16.

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.

Crossrefs

Cf. A049417 (isigma), A327574.
Cf. A024916 (all divisors), A064609 (unitary), A307042 (exponential), A307159 (bi-unitary).

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) + 1); Accumulate[Array[isigma, 52]]

Formula

a(n) ~ c * n^2, where c = 0.730718... (A327574).

A379515 Numerators of the partial alternating sums of the reciprocals of the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, 2, 11, 43, 53, 4, 37, 293, 329, 103, 113, 107, 809, 129, 809, 12913, 41119, 39691, 41833, 8081, 33395, 32443, 33871, 10973, 148361, 48275, 7149, 34861, 108119, 319937, 164941, 1761311, 112361, 662011, 5405483, 26502319, 516671461, 508357441, 3620857237, 3556192637
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2024

Keywords

Examples

			Fractions begin with 1, 2/3, 11/12, 43/60, 53/60, 4/5, 37/40, 293/360, 329/360, 103/120, 113/120, 107/120, ...
		

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Numerator[Accumulate[Table[(-1)^(n+1)/usigma[n], {n, 1, 50}]]]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / usigma(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A034448(k)).
a(n)/A379516(n) = E * log(n) + F + O(log(n)^(5/3) * log(log(n))^(4/3) / n^u), where u > 0, E = A308041 * (2/(A323482 + 1/2) - 1) = 0.10259754363391420806..., and F is a constant.
Showing 1-10 of 12 results. Next