cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379513 Numerators of the partial sums of the reciprocals of the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, 4, 19, 107, 39, 61, 259, 817, 853, 97, 301, 307, 2209, 187, 2279, 39583, 121129, 122557, 124699, 126127, 509863, 171541, 173921, 526523, 6930479, 6983519, 7063079, 7118771, 7193027, 802663, 405199, 13495327, 1131701, 30726097, 123670153, 622026437, 11910394103
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2024

Keywords

Examples

			Fractions begin with 1, 4/3, 19/12, 107/60, 39/20, 61/30, 259/120, 817/360, 853/360, 97/40, 301/120, 307/120, ...
		

Crossrefs

Cf. A034448, A064609, A370898, A379514 (denominators), A379515.

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Numerator[Accumulate[Table[1/usigma[n], {n, 1, 50}]]]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / usigma(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A034448(k)).
a(n)/A379514(n) = B * log(n) + D + O(log(n)^(5/3) * log(log(n))^(4/3) / n), where B = A308041, D = B * (gamma + A1 - A2), gamma = A001620, A1 = Sum_{p prime} ((p*C(p)*log(p)/(p-1)) * Sum_{k>=1} (k/(p^k*(p^(k+1)+1)))), A2 = Sum_{p prime} ((C(p)*log(p)/p^2) * Sum_{k>=0} (1/(p^k*(p^(k+1)+1)))), and C(p) = 1 - (p/(p-1)) * Sum_{k>=1} (1/(p^k*(p^(k+1)+1))) (Sita Ramaiah and Suryanarayana, 1980).

A379516 Denominators of the partial alternating sums of the reciprocals of the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, 3, 12, 60, 60, 5, 40, 360, 360, 120, 120, 120, 840, 140, 840, 14280, 42840, 42840, 42840, 8568, 34272, 34272, 34272, 11424, 148512, 49504, 7072, 35360, 106080, 318240, 159120, 1750320, 109395, 656370, 5250960, 26254800, 498841200, 498841200, 3491888400, 3491888400
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2024

Keywords

Crossrefs

Cf. A034448, A064609, A370898, A379514, A379515 (numerators).

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Denominator[Accumulate[Table[(-1)^(n+1)/usigma[n], {n, 1, 50}]]]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / usigma(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A034448(k)).
Showing 1-2 of 2 results.