cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A379513 Numerators of the partial sums of the reciprocals of the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, 4, 19, 107, 39, 61, 259, 817, 853, 97, 301, 307, 2209, 187, 2279, 39583, 121129, 122557, 124699, 126127, 509863, 171541, 173921, 526523, 6930479, 6983519, 7063079, 7118771, 7193027, 802663, 405199, 13495327, 1131701, 30726097, 123670153, 622026437, 11910394103
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2024

Keywords

Examples

			Fractions begin with 1, 4/3, 19/12, 107/60, 39/20, 61/30, 259/120, 817/360, 853/360, 97/40, 301/120, 307/120, ...
		

Crossrefs

Cf. A034448, A064609, A370898, A379514 (denominators), A379515.

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Numerator[Accumulate[Table[1/usigma[n], {n, 1, 50}]]]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / usigma(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A034448(k)).
a(n)/A379514(n) = B * log(n) + D + O(log(n)^(5/3) * log(log(n))^(4/3) / n), where B = A308041, D = B * (gamma + A1 - A2), gamma = A001620, A1 = Sum_{p prime} ((p*C(p)*log(p)/(p-1)) * Sum_{k>=1} (k/(p^k*(p^(k+1)+1)))), A2 = Sum_{p prime} ((C(p)*log(p)/p^2) * Sum_{k>=0} (1/(p^k*(p^(k+1)+1)))), and C(p) = 1 - (p/(p-1)) * Sum_{k>=1} (1/(p^k*(p^(k+1)+1))) (Sita Ramaiah and Suryanarayana, 1980).

A379514 Denominators of the partial sums of the reciprocals of the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, 3, 12, 60, 20, 30, 120, 360, 360, 40, 120, 120, 840, 70, 840, 14280, 42840, 42840, 42840, 42840, 171360, 57120, 57120, 171360, 2227680, 2227680, 2227680, 2227680, 2227680, 247520, 123760, 4084080, 340340, 9189180, 36756720, 183783600, 3491888400, 3491888400
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2024

Keywords

Crossrefs

Cf. A034448, A064609, A370898, A379513 (numerators), A379516.

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Denominator[Accumulate[Table[1/usigma[n], {n, 1, 50}]]]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / usigma(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A034448(k)).

A379515 Numerators of the partial alternating sums of the reciprocals of the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, 2, 11, 43, 53, 4, 37, 293, 329, 103, 113, 107, 809, 129, 809, 12913, 41119, 39691, 41833, 8081, 33395, 32443, 33871, 10973, 148361, 48275, 7149, 34861, 108119, 319937, 164941, 1761311, 112361, 662011, 5405483, 26502319, 516671461, 508357441, 3620857237, 3556192637
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2024

Keywords

Examples

			Fractions begin with 1, 2/3, 11/12, 43/60, 53/60, 4/5, 37/40, 293/360, 329/360, 103/120, 113/120, 107/120, ...
		

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Numerator[Accumulate[Table[(-1)^(n+1)/usigma[n], {n, 1, 50}]]]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / usigma(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A034448(k)).
a(n)/A379516(n) = E * log(n) + F + O(log(n)^(5/3) * log(log(n))^(4/3) / n^u), where u > 0, E = A308041 * (2/(A323482 + 1/2) - 1) = 0.10259754363391420806..., and F is a constant.

A379516 Denominators of the partial alternating sums of the reciprocals of the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, 3, 12, 60, 60, 5, 40, 360, 360, 120, 120, 120, 840, 140, 840, 14280, 42840, 42840, 42840, 8568, 34272, 34272, 34272, 11424, 148512, 49504, 7072, 35360, 106080, 318240, 159120, 1750320, 109395, 656370, 5250960, 26254800, 498841200, 498841200, 3491888400, 3491888400
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2024

Keywords

Crossrefs

Cf. A034448, A064609, A370898, A379514, A379515 (numerators).

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Denominator[Accumulate[Table[(-1)^(n+1)/usigma[n], {n, 1, 50}]]]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / usigma(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A034448(k)).

A379924 Numbers m that divide the alternating sum Sum_{k=1..m} (-1)^(k+1) * usigma(k).

Original entry on oeis.org

1, 2, 9, 54, 101, 178, 189, 2071, 3070, 9171, 11450, 12794, 21405, 27553, 35285, 251974, 2069863, 2395894, 155931488, 387586437, 758519827, 1202435693, 9859113494, 42703260442
Offset: 1

Views

Author

Amiram Eldar, Jan 06 2025

Keywords

Comments

Numbers m such that m | A370898(m).
The corresponding quotients, A370898(m)/m, are -1, 1, 0, 6, 9, ... (see the link for more values).
a(25) > 5*10^10, if it exists.

Crossrefs

Cf. A034448 (usigma), A370898.

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; With[{m = 260000}, Position[Accumulate[Table[(-1)^n * usigma[n], {n, 1, m}]]/Range[m], _?IntegerQ] // Flatten]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]); }
    list(lim) = my(s = 0); for(k = 1, lim, s += (-1)^k * usigma(k); if(!(s % k), print1(k, ", ")));

A383055 Numerators of the partial sums of the reciprocals of the number of unitary divisors function (A034444).

Original entry on oeis.org

1, 3, 2, 5, 3, 13, 15, 17, 19, 5, 11, 23, 25, 13, 27, 29, 31, 8, 17, 35, 9, 37, 39, 10, 21, 43, 45, 23, 12, 97, 101, 105, 107, 109, 111, 113, 117, 119, 121, 123, 127, 16, 33, 67, 17, 69, 71, 18, 37, 75, 19, 77, 79, 20, 81, 41, 83, 21, 43, 173, 177, 179, 181, 185
Offset: 1

Views

Author

Amiram Eldar, Apr 15 2025

Keywords

Examples

			Fractions begin with 1, 3/2, 2, 5/2, 3, 13/4, 15/4, 17/4, 19/4, 5, 11/2, 23/4, ...
		

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 42-43.
  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 50.

Crossrefs

The unitary analog of A104528.
Cf. A002161, A034444, A345288, A383056 (denominators).
Similar sequences: A064608, A370898, A379513.

Programs

  • Mathematica
    Numerator[Accumulate[1/Array[2^PrimeNu[#] &, 100]]]
  • PARI
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / 2^omega(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A034444(k)).
a(n)/A383056(n) = (c/sqrt(Pi)) * n / sqrt(log(n)) + O(n / log(n)^(3/2)), where c = A345288 (De Koninck and Ivić, 1980).

A383056 Denominators of the partial sums of the reciprocals of the number of unitary divisors function (A034444).

Original entry on oeis.org

1, 2, 1, 2, 1, 4, 4, 4, 4, 1, 2, 4, 4, 2, 4, 4, 4, 1, 2, 4, 1, 4, 4, 1, 2, 4, 4, 2, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1, 2, 4, 1, 4, 4, 1, 2, 4, 1, 4, 4, 1, 4, 2, 4, 1, 2, 8, 8, 8, 8, 8, 8, 2, 1, 4, 2, 8, 8, 8, 8, 8, 8, 8, 8, 1, 2, 4, 4, 2, 1, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Amiram Eldar, Apr 15 2025

Keywords

Examples

			Fractions begin with 1, 3/2, 2, 5/2, 3, 13/4, 15/4, 17/4, 19/4, 5, 11/2, 23/4, ...
		

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 42-43.
  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 50.

Crossrefs

The unitary analog of A104529.
Cf. A034444, A383055 (numerators).
Similar sequences: A064608, A370898, A379514.

Programs

  • Mathematica
    Denominator[Accumulate[1/Array[2^PrimeNu[#] &, 100]]]
  • PARI
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / 2^omega(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A034444(k)).
Showing 1-7 of 7 results.