cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A348984 a(n) = gcd(sigma(n), A325973(n)), where A325973 is the arithmetic mean of {sum of squarefree divisors} and {sum of unitary divisors}.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 8, 8, 30, 72, 32, 9, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 24, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 3, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32, 108
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 4, although a(4) = 1 and a(27) = 8.

Crossrefs

Differs from A348047 for the first time at n=108, where a(108) = 4, while A348047(108) = 8.
Cf. also A348733, A348946.

Programs

  • Mathematica
    f1[p_, e_] := p + 1; f2[p_, e_] := p^e + 1; s[1] = 1; s[n_] := (Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f)/2; a[n_] := GCD[s[n], DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A325973(n) = (1/2)*sumdiv(n, d, d*(issquarefree(d) + (1==gcd(d, n/d))));
    A348984(n) = gcd(sigma(n), A325973(n));

Formula

a(n) = gcd(A000203(n), A325973(n)).
a(n) = gcd(A000203(n), A325974(n)) = gcd(A325973(n), A325974(n)).
a(n) = A000203(n) / A348985(n) = A325973(n) / A348986(n).

A348985 Numerator of ratio sigma(n) / A325973(n), where A325973 is the arithmetic mean of {sum of squarefree divisors} and {sum of unitary divisors}.

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 5, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 5, 31, 1, 5, 7, 1, 1, 1, 7, 1, 1, 1, 91, 1, 1, 1, 5, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 5, 1, 5, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 65, 1, 1, 31, 7, 1, 1, 1, 31, 121, 1, 1, 7, 1, 1, 1, 5, 1, 13, 1, 7, 1, 1, 1, 7, 1, 57, 13
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 70 <> 35 = 7*5 = a(4)*(27).

Crossrefs

Differs from A348048 for the first time at n=108, where a(108) = 70, while A348048(108) = 35.
Cf. also A348948.

Programs

  • Mathematica
    f1[p_, e_] := p + 1; f2[p_, e_] := p^e + 1; s[1] = 1; s[n_] := (Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f)/2; a[n_] := Numerator[DivisorSigma[1, n]/s[n]]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A325973(n) = (1/2)*sumdiv(n, d, d*(issquarefree(d) + (1==gcd(d, n/d))));
    A348985(n) = { my(s=sigma(n)); (s/gcd(s, A325973(n))); };

Formula

a(n) = A000203(n) / A348984(n) = sigma(n) / gcd(sigma(n), A325973(n)).

A348986 Denominator of ratio sigma(n) / A325973(n), where A325973 is the arithmetic mean of {sum of squarefree divisors} and {sum of unitary divisors}.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 2, 7, 1, 1, 4, 1, 1, 1, 10, 1, 7, 1, 4, 1, 1, 1, 2, 16, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 31, 1, 1, 1, 2, 1, 1, 1, 4, 7, 1, 1, 10, 29, 16, 1, 4, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 7, 34, 1, 1, 1, 4, 1, 1, 1, 17, 1, 1, 16, 4, 1, 1, 1, 10, 43, 1, 1, 4, 1, 1, 1, 2, 1, 7, 1, 4, 1, 1, 1, 2, 1, 29, 7, 74, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Comments

This is not multiplicative: a(4) = 4 and a(9) = 7, but a(36) = 31, not 28.

Crossrefs

Cf. also A348947.

Programs

  • Mathematica
    f1[p_, e_] := p + 1; f2[p_, e_] := p^e + 1; s[1] = 1; s[n_] := (Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f)/2; a[n_] := Denominator[DivisorSigma[1, n]/s[n]]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A325973(n) = (1/2)*sumdiv(n, d, d*(issquarefree(d) + (1==gcd(d, n/d))));
    A348986(n) = { my(am=A325973(n)); (am/gcd(sigma(n),am)); };

Formula

a(n) = A325973(n) / A348984(n) = A325973(n) / gcd(A000203(n), A325973(n)).

A378433 Dirichlet inverse of A325973, where A325973 is the arithmetic mean of {sum of unitary divisors} and {sum of squarefree divisors}.

Original entry on oeis.org

1, -3, -4, 5, -6, 12, -8, -9, 9, 18, -12, -20, -14, 24, 24, 15, -18, -27, -20, -30, 32, 36, -24, 36, 20, 42, -24, -40, -30, -72, -32, -27, 48, 54, 48, 42, -38, 60, 56, 54, -42, -96, -44, -60, -54, 72, -48, -60, 35, -60, 72, -70, -54, 72, 72, 72, 80, 90, -60, 120, -62, 96, -72, 45, 84, -144, -68, -90, 96, -144, -72, -72
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2024

Keywords

Comments

Apparently differs from A378434 at positions given by A048111: 16, 32, 36, 48, 64, 72, 80, 81, 96, ...

Crossrefs

Programs

  • PARI
    A325973(n) = (1/2)*sumdiv(n, d, d*(issquarefree(d) + (1==gcd(d, n/d))));
    memoA378433 = Map();
    A378433(n) = if(1==n,1,my(v); if(mapisdefined(memoA378433,n,&v), v, v = -sumdiv(n,d,if(dA325973(n/d)*A378433(d),0)); mapput(memoA378433,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA325973(n/d) * a(d).

A359431 a(n) = A325973(n) - A326043(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 5, 0, 0, 0, 3, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 6, 0, 8, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 12, 12, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 10, 0, 0, 0, 14, 0
Offset: 1

Views

Author

Antti Karttunen, Jan 04 2023

Keywords

Crossrefs

Cf. A048107 (positions of 0's), A325973, A326043, A359471.
Cf. also comments in A325981.

Programs

  • PARI
    A325973(n) = (1/2)*sumdiv(n, d, d*(issquarefree(d) + (1==gcd(d, n/d))));
    A326043(n) = if(1==n, n, my(f = factor(n)); prod(i=1, #f~, floor((1/f[i, 2]) * ((f[i, 2]-1) + (((f[i, 1]^(1+f[i, 2])) - 1)/(f[i, 1]-1))))));
    A359431(n) = (A325973(n)-A326043(n));

A325975 a(n) = gcd(A325977(n), A325978(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

See comments in A325979 and A325981.

Crossrefs

Programs

Formula

a(n) = gcd(A325977(n), A325978(n)).
a(n) = (1/2)*gcd(A034460(n)+A325313(n), A325814(n)+A325314(n)).

A325981 Odd composites for which gcd(A325977(n), A325978(n)) is equal to abs(A325977(n)).

Original entry on oeis.org

45, 495, 585, 765, 855, 1305, 18837, 21525, 31635, 38295, 45315, 50445, 51255, 60435, 63495, 68085, 77265, 96615, 1403115, 2446353, 3411975, 3999465, 4091745, 4233537, 4287255, 4631319, 10813425, 10967085, 11490345, 15578199, 16143309, 16329645, 16633071, 17179515, 17311203, 17355915, 21159075, 21933975, 22579725
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

Provided that A325977 and A325978 are never zero on same n, these are odd composite numbers n such that A325977(n) is not zero and divides A325978(n).
Based on the first 147 terms it seems that this sequence is a subsequence of A072357, that is each term has exactly one prime factor with exponent 2, with one or more other prime factors that are all unitary (i.e., each term satisfies A001222(x) - A001221(x) = 1). On the other hand, it has been proved that no odd perfect number, if such numbers exist at all, can have such a factorization (see A326137 and a link to P. P. Nielsen's paper there).
Nineteen initial terms factorize as:
45 = 3^2 * 5^1,
495 = 3^2 * 5^1 * 11^1,
585 = 3^2 * 5^1 * 13^1,
765 = 3^2 * 5^1 * 17^1,
855 = 3^2 * 5^1 * 19^1,
1305 = 3^2 * 5^1 * 29^1,
18837 = 3^2 * 7^1 * 13^1 * 23^1,
21525 = 3^1 * 5^2 * 7^1 * 41^1,
31635 = 3^2 * 5^1 * 19^1 * 37^1,
38295 = 3^2 * 5^1 * 23^1 * 37^1,
45315 = 3^2 * 5^1 * 19^1 * 53^1,
50445 = 3^2 * 5^1 * 19^1 * 59^1,
51255 = 3^2 * 5^1 * 17^1 * 67^1,
60435 = 3^2 * 5^1 * 17^1 * 79^1,
63495 = 3^2 * 5^1 * 17^1 * 83^1,
68085 = 3^2 * 5^1 * 17^1 * 89^1,
77265 = 3^2 * 5^1 * 17^1 * 101^1,
96615 = 3^2 * 5^1 * 19^1 * 113^1,
1403115 = 3^1 * 5^1 * 7^2 * 23^1 * 83^1,
and the 62nd term as a(62) = 2919199437 = 3^2 * 7^1 * 11^1 * 43^1 * 163^1 * 601^1.
If we select a subsequence of terms for which the quotient A325978(n)/A325977(n) is positive, then we are left with the following numbers: 495, 585, 31635, 38295, 45315, 51255, 60435, 63495, 1403115, 3999465, etc. which is a subsequence of A326070.

Crossrefs

Programs

A048107 Numbers k such that the number of unitary divisors of k (A034444) is larger than the number of non-unitary divisors of k (A048105).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Keywords

Comments

Numbers with at most one 2 and no 3s or higher in their prime exponents. - Charles R Greathouse IV, Aug 25 2016
A disjoint union of A005117 and A060687. The asymptotic density of this sequence is (6/Pi^2) * (1 + Sum_{p prime} 1/(p*(p+1))) = A059956 * (1 + A179119) = A059956 + A271971 = 0.8086828238... - Amiram Eldar, Nov 07 2020

Examples

			n = 420 = 2*2*3*5*7, 4 distinct prime factors, 24 divisors of which 16 are unitary and 8 are not; ud(n) > nud(n) and 2^(4+1) = 32 is larger than d, the number of divisors.
		

Crossrefs

Complement of A048108.
A072357 is a subsequence.

Programs

  • Mathematica
    Select[Range[500], 2^(1 + PrimeNu[#]) > DivisorSigma[0, #] &] (* G. C. Greubel, May 05 2017 *)
  • PARI
    is(n)=my(f=factor(n)[, 2], t); for(i=1, #f, if(f[i]>1, if(t||f[i]>2, return(0), t=1))); 1 \\ Charles R Greathouse IV, Sep 17 2015
    
  • PARI
    is(n)=n==1 || factorback(factor(n)[,2])<3 \\ Charles R Greathouse IV, Aug 25 2016

Formula

Numbers for which 2^(r(n)+1) > d(n), where r = A001221, d = A000005.

A325977 a(n) = (1/2)*(A034460(n) + A325313(n)).

Original entry on oeis.org

0, 1, 1, 0, 1, 6, 1, -2, -2, 8, 1, 4, 1, 10, 9, -6, 1, 3, 1, 4, 11, 14, 1, 0, -9, 16, -11, 4, 1, 42, 1, -14, 15, 20, 13, -5, 1, 22, 17, -4, 1, 54, 1, 4, -3, 26, 1, -8, -20, -2, 21, 4, 1, -6, 17, -8, 23, 32, 1, 36, 1, 34, -7, -30, 19, 78, 1, 4, 27, 74, 1, -21, 1, 40, -11, 4, 19, 90, 1, -20, -38, 44, 1, 44, 23, 46, 33, -16, 1, 36, 21, 4
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

Question: Are n = 1, 4, 24, 240, 349440 (A325963) the only positions of zeros in this sequence?

Crossrefs

Programs

Formula

a(n) = (1/2)*(A034460(n) + A325313(n)).
a(n) = A325973(n) - n.
a(n) = A325978(n) - A033879(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/zeta(3) - 1)/4 = 0.0921081944... . - Amiram Eldar, Feb 22 2024

A325978 a(n) = (1/2)*(A325314(n) + A325814(n)).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, -1, 3, 10, 11, 0, 13, 14, 15, -5, 17, 0, 19, 2, 21, 22, 23, -12, 10, 26, 3, 4, 29, 30, 31, -13, 33, 34, 35, -24, 37, 38, 39, -14, 41, 42, 43, 8, 9, 46, 47, -36, 21, 5, 51, 10, 53, -18, 55, -16, 57, 58, 59, -12, 61, 62, 15, -29, 65, 66, 67, 14, 69, 70, 71, -72, 73, 74, 15, 16, 77, 78, 79, -46, 3, 82, 83, -12, 85
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

Question: Are a(12) = 0 and a(18) = 0 the only zeros in this sequence?

Crossrefs

Programs

Formula

a(n) = (1/2)*(A325314(n) + A325814(n)).
a(n) = n - A325974(n).
a(n) = A033879(n) + A325977(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3/4 - zeta(2)*(1/2 - 1/(4*zeta(3))) = 0.2696411609... . - Amiram Eldar, Feb 22 2024
Showing 1-10 of 17 results. Next