cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A326057 a(n) = gcd(A003961(n)-2n, A003961(n)-sigma(n)), where A003961(n) is fully multiplicative function with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 1, 1, 1, 43, 1, 3, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 19, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 3, 3, 5, 7, 1, 1, 3, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Comments

Terms a(n) larger than 1 and equal to A252748(n) occur at n = 6, 28, 69, 91, 496, ..., see A326134. See also A349753.
Records 1, 3, 43, 45, 2005, 79243, ... occur at n = 1, 6, 28, 360, 496, 8128, ...

Crossrefs

Programs

  • Mathematica
    Array[GCD[#3 - #1, #3 - #2] & @@ {2 #, DivisorSigma[1, #], Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &, 78] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A252748(n) = (A003961(n) - (2*n));
    A286385(n) = (A003961(n) - sigma(n));
    A326057(n) = gcd(A252748(n), A286385(n));

Formula

a(n) = gcd(A252748(n), A286385(n)) = gcd(A003961(n) - 2n, A003961(n) - A000203(n)).
a(n) = gcd(A252748(n), A033879(n)) = gcd(A286385(n), A033879(n)). [Also A033880 can be used] - Antti Karttunen, May 06 2024

A325973 Arithmetic mean of {sum of unitary divisors} and {sum of squarefree divisors}: a(n) = (1/2) * (A034448(n) + A048250(n)).

Original entry on oeis.org

1, 3, 4, 4, 6, 12, 8, 6, 7, 18, 12, 16, 14, 24, 24, 10, 18, 21, 20, 24, 32, 36, 24, 24, 16, 42, 16, 32, 30, 72, 32, 18, 48, 54, 48, 31, 38, 60, 56, 36, 42, 96, 44, 48, 42, 72, 48, 40, 29, 48, 72, 56, 54, 48, 72, 48, 80, 90, 60, 96, 62, 96, 56, 34, 84, 144, 68, 72, 96, 144, 72, 51, 74, 114, 64, 80, 96, 168, 80, 60, 43, 126
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

This is not multiplicative: a(4) = 4, a(9) = 7, but a(36) = 31, not 28. However, the function acts multiplicatively on certain subsequences of natural numbers, like for example when restricted to A048107, where this sequence coincides with A326043.

Examples

			For n = 36, its divisors are 1, 2, 3, 4, 6, 9, 12, 18, 36. Of these, unitary divisors are 1, 4, 9 and 36, so A034448(36) = 1+4+9+36 = 50, while the squarefree divisors are 1, 2, 3 and 6, so A048250(36) = 1+2+3+6 = 12, thus a(36) = (50+12)/2 = 31.
For n = 495, its divisors are 1, 3, 5, 9, 11, 15, 33, 45, 55, 99, 165, 495. Of these, unitary are 1, 5, 9, 11, 45, 55, 99, 495, whose sum is A034448(495) = 720, while the squarefree divisors are 1, 3, 5, 11, 15, 33, 55, 165, and their sum is A048250(495) = 288. Thus a(495) = (720+288)/2 = 504. Also for 495, whose prime factorization is 3^2 * 5^1 * 11^1 this can be computed faster as the average of ((3^2)+1)*(5+1)*(11+1) and (3+1)*(5+1)*(11+1), thus (1/2)*(3+(3^2)+2)*(5+1)*(11+1) = 504.
		

Crossrefs

Programs

Formula

a(n) = (1/2) * (A034448(n) + A048250(n)).
a(n) = A000203(n) - A325974(n).
a(n) = n + A325977(n).
a(A048107(n)) = A326043(A048107(n)).
For n >= 1, a(2^n) = A052548(n-1) = 2^(n-1) + 2.
For n >= 1, a(3^n) = A289521(n) = (3^n + 5)/2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/zeta(3) + 1)/4 = 0.5921081944... . - Amiram Eldar, Feb 22 2024

A326048 a(n) = gcd(n-A050449(n), A082052(n)-n), where A050449 and A082052 give the sum of divisors of the form 4k+1, and not of that form, respectively.

Original entry on oeis.org

1, 1, 2, 1, 1, 5, 6, 1, 1, 2, 10, 1, 1, 1, 3, 1, 1, 1, 18, 2, 1, 1, 22, 1, 1, 2, 1, 27, 1, 12, 30, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 42, 1, 3, 5, 46, 1, 1, 1, 3, 2, 1, 4, 1, 1, 1, 2, 58, 6, 1, 1, 2, 1, 1, 4, 66, 10, 1, 4, 70, 1, 1, 2, 2, 3, 1, 4, 78, 2, 1, 2, 82, 2, 1, 5, 3, 1, 1, 6, 7, 1, 1, 1, 1, 5, 1, 1, 14, 1, 1, 12, 102, 2, 9
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A326049(n), A326050(n)) = gcd(n-A050449(n), A082052(n)-n).
a(2n-1) = A326047(2n-1) for all n.

A325981 Odd composites for which gcd(A325977(n), A325978(n)) is equal to abs(A325977(n)).

Original entry on oeis.org

45, 495, 585, 765, 855, 1305, 18837, 21525, 31635, 38295, 45315, 50445, 51255, 60435, 63495, 68085, 77265, 96615, 1403115, 2446353, 3411975, 3999465, 4091745, 4233537, 4287255, 4631319, 10813425, 10967085, 11490345, 15578199, 16143309, 16329645, 16633071, 17179515, 17311203, 17355915, 21159075, 21933975, 22579725
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

Provided that A325977 and A325978 are never zero on same n, these are odd composite numbers n such that A325977(n) is not zero and divides A325978(n).
Based on the first 147 terms it seems that this sequence is a subsequence of A072357, that is each term has exactly one prime factor with exponent 2, with one or more other prime factors that are all unitary (i.e., each term satisfies A001222(x) - A001221(x) = 1). On the other hand, it has been proved that no odd perfect number, if such numbers exist at all, can have such a factorization (see A326137 and a link to P. P. Nielsen's paper there).
Nineteen initial terms factorize as:
45 = 3^2 * 5^1,
495 = 3^2 * 5^1 * 11^1,
585 = 3^2 * 5^1 * 13^1,
765 = 3^2 * 5^1 * 17^1,
855 = 3^2 * 5^1 * 19^1,
1305 = 3^2 * 5^1 * 29^1,
18837 = 3^2 * 7^1 * 13^1 * 23^1,
21525 = 3^1 * 5^2 * 7^1 * 41^1,
31635 = 3^2 * 5^1 * 19^1 * 37^1,
38295 = 3^2 * 5^1 * 23^1 * 37^1,
45315 = 3^2 * 5^1 * 19^1 * 53^1,
50445 = 3^2 * 5^1 * 19^1 * 59^1,
51255 = 3^2 * 5^1 * 17^1 * 67^1,
60435 = 3^2 * 5^1 * 17^1 * 79^1,
63495 = 3^2 * 5^1 * 17^1 * 83^1,
68085 = 3^2 * 5^1 * 17^1 * 89^1,
77265 = 3^2 * 5^1 * 17^1 * 101^1,
96615 = 3^2 * 5^1 * 19^1 * 113^1,
1403115 = 3^1 * 5^1 * 7^2 * 23^1 * 83^1,
and the 62nd term as a(62) = 2919199437 = 3^2 * 7^1 * 11^1 * 43^1 * 163^1 * 601^1.
If we select a subsequence of terms for which the quotient A325978(n)/A325977(n) is positive, then we are left with the following numbers: 495, 585, 31635, 38295, 45315, 51255, 60435, 63495, 1403115, 3999465, etc. which is a subsequence of A326070.

Crossrefs

Programs

A326046 a(n) = gcd(n-A326039(n), A326040(n)-n).

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 4, 12, 2, 1, 1, 8, 1, 3, 1, 5, 2, 1, 4, 1, 5, 1, 24, 28, 6, 15, 1, 1, 1, 1, 1, 36, 2, 1, 1, 40, 2, 3, 4, 4, 10, 1, 4, 1, 7, 15, 3, 4, 2, 19, 4, 1, 1, 1, 8, 60, 2, 1, 1, 1, 6, 3, 1, 1, 2, 35, 1, 72, 1, 1, 12, 1, 2, 3, 1, 1, 1, 1, 4, 1, 2, 1, 4, 8, 27, 5, 8, 29, 2, 7, 60, 48, 1, 1, 1, 100, 6, 3, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A326044(n), A326045(n)) = gcd(n-A326039(n), A326040(n)-n).

A326060 a(n) = gcd(n-A035316(n), A285309(n)-n), where A035316 and A285309 give respectively the sums of square and nonsquare divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 6, 1, 1, 1, 10, 1, 12, 1, 2, 1, 16, 1, 18, 1, 10, 1, 22, 1, 1, 5, 1, 23, 28, 1, 30, 1, 2, 1, 2, 1, 36, 1, 2, 5, 40, 1, 42, 1, 1, 5, 46, 1, 1, 1, 10, 1, 52, 4, 2, 1, 2, 1, 58, 1, 60, 1, 1, 1, 2, 1, 66, 1, 2, 1, 70, 1, 72, 1, 1, 1, 2, 1, 78, 1, 1, 1, 82, 1, 2, 5, 2, 1, 88, 2, 10, 1, 2, 1, 2, 15, 96, 1, 1, 1, 100, 1, 102, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Comments

Below 2^27 there are following numbers k such that a(k) is equal to A326059(k), and quotient A326058(k)/A326059(k) is odd: 6, 28, 496, 1625, 2057, 8128, 33550336, 107452235. The odd terms are factored as: 1625 = 5^3 * 13, 2057 = 11^2 * 17, 107452235 = 5 * 11^2 * 97 * 1831.

Crossrefs

Programs

Formula

a(n) = gcd(A326058(n), A326059(n)) = gcd(n-A035316(n), A285309(n)-n).

A326062 a(1) = gcd((sigma(n)-A032742(n))-n, n-A032742(n)), where A032742 gives the largest proper divisor of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 6, 1, 1, 1, 10, 2, 12, 1, 2, 1, 16, 3, 18, 2, 2, 1, 22, 12, 1, 1, 2, 14, 28, 3, 30, 1, 2, 1, 2, 1, 36, 1, 2, 10, 40, 3, 42, 2, 6, 1, 46, 4, 1, 1, 2, 2, 52, 3, 2, 4, 2, 1, 58, 6, 60, 1, 2, 1, 2, 3, 66, 2, 2, 1, 70, 3, 72, 1, 2, 2, 2, 3, 78, 2, 1, 1, 82, 14, 2, 1, 2, 4, 88, 9, 2, 2, 2, 1, 2, 12, 96, 1, 6, 1, 100, 3, 102, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Comments

See comments in A326063 and A326064.

Crossrefs

Programs

Formula

a(1) = 1; for n > 1, a(n) = gcd(A060681(n), A318505(n)).
a(n) = gcd((A000203(n)-A032742(n))-n, n-A032742(n)).

A326056 a(n) = gcd(sigma(n)-A008833(n)-n, n-A008833(n)), where sigma is the sum of divisors of n, and A008833 is the largest square dividing n.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 6, 1, 5, 1, 10, 4, 12, 1, 2, 1, 16, 3, 18, 2, 10, 1, 22, 4, 19, 5, 2, 24, 28, 1, 30, 1, 2, 1, 2, 19, 36, 1, 2, 2, 40, 1, 42, 4, 12, 5, 46, 4, 41, 1, 10, 6, 52, 3, 2, 4, 2, 1, 58, 8, 60, 1, 2, 1, 2, 1, 66, 2, 2, 1, 70, 3, 72, 1, 2, 12, 2, 1, 78, 2, 41, 1, 82, 8, 2, 5, 2, 4, 88, 27, 10, 8, 2, 1, 2, 20, 96, 1, 6
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Comments

Composite numbers n such that a(n) = A326055(n) start as: 6, 28, 336, 496, 792, 8128, 31968, 3606912, ...
Nonsquare odd numbers n such that a(n) = abs(A326054(n)) start as: 21, 153, 301, 697, 1333, 1909, 1917, 2041, 3901, 4753, 24601, 24957, 26977, 29161, 29637, 56953, 67077, 96361, ...

Crossrefs

Programs

Formula

a(n) = gcd(A326054(n), A326055(n)) = gcd((A000203(n)-A008833(n))-n, n-A008833(n)).

A326129 a(n) = gcd(A326127(n), A326128(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 1, 2, 10, 1, 12, 4, 6, 1, 16, 1, 18, 1, 10, 8, 22, 6, 1, 10, 2, 21, 28, 12, 30, 1, 18, 14, 22, 1, 36, 16, 22, 10, 40, 12, 42, 1, 4, 20, 46, 1, 1, 1, 30, 3, 52, 12, 38, 2, 34, 26, 58, 3, 60, 28, 2, 1, 46, 12, 66, 1, 42, 4, 70, 1, 72, 34, 2, 3, 58, 12, 78, 1, 1, 38, 82, 7, 62, 40, 54, 2, 88, 2, 70, 1, 58, 44, 70, 30
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Comments

Question: Are there any other numbers than those in A000396 that satisfy a(k) = A326128(k)?
See also comments in A336641, where all such k should reside. - Antti Karttunen, Jul 29 2020

Crossrefs

Programs

Formula

a(n) = n - A336645(n). - Antti Karttunen, Jul 29 2020

A326144 a(n) = gcd(A066503(n), A326143(n)) = gcd(n - A007947(n), sigma(n) - A007947(n) - n).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 1, 2, 10, 2, 12, 4, 6, 1, 16, 3, 18, 2, 10, 8, 22, 6, 1, 10, 2, 14, 28, 12, 30, 1, 18, 14, 22, 1, 36, 16, 22, 10, 40, 12, 42, 2, 6, 20, 46, 14, 1, 1, 30, 2, 52, 12, 38, 2, 34, 26, 58, 6, 60, 28, 2, 1, 46, 12, 66, 2, 42, 4, 70, 3, 72, 34, 2, 2, 58, 12, 78, 2, 1, 38, 82, 14, 62, 40, 54, 2, 88, 6, 70, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A066503(n), A326143(n)) = gcd(n-A007947(n), A000203(n)-A007947(n)-n).
Showing 1-10 of 22 results. Next