cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A349000 a(n) = A323166(A276086(n)), where A323166(n) = gcd(n, usigma(n)), usigma (A034448) is multiplicative with a(p^e) = (p^e)+1, and A276086 gives the prime product form of primorial base expansion of n.

Original entry on oeis.org

1, 1, 1, 6, 1, 6, 1, 2, 3, 6, 15, 90, 1, 2, 1, 6, 5, 30, 1, 2, 3, 6, 45, 90, 1, 2, 1, 6, 5, 30, 1, 2, 1, 6, 1, 6, 1, 2, 3, 6, 15, 90, 1, 2, 1, 6, 5, 30, 7, 14, 21, 42, 315, 630, 1, 2, 1, 6, 5, 30, 1, 2, 1, 6, 1, 6, 5, 10, 15, 30, 15, 90, 25, 50, 25, 150, 25, 150, 175, 350, 525, 1050, 7875, 15750, 25, 50, 25, 150, 125, 750
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2021

Keywords

Crossrefs

Programs

  • PARI
    A349000(n) = { my(m1=1, m2=1, p=2, u); while(n, if(n%p, u = p^(n%p); m1 *= u; m2 *= (1+u)); n = n\p; p = nextprime(1+p)); gcd(m1,m2); };

Formula

a(n) = A323166(A276086(n)) = gcd(A276086(n), A348996(n)).

A325813 a(n) = gcd(A034448(n)-n, n-A048146(n)), where A034448 and A048146 are respectively the sum of unitary and non-unitary divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 12, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 7, 3, 6, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 12, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 21, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 23 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A034460(n), A325814(n)).

A327158 Unitary multiply-perfect numbers: n divides usigma(n), where usigma is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

1, 6, 60, 90, 87360
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2019

Keywords

Comments

10^13 < a(6) <= 146361946186458562560000. - Giovanni Resta, Aug 29 2019

Crossrefs

Fixed points of A323166, positions of zeros in A327164.
Cf. A002827 (a subsequence), A034448, A327163.
Cf. also A007691.

Programs

  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    isA327158(n) = (gcd(n,A034448(n))==n);

A323409 Greatest common divisor of Product (p_i^e_i)-1 and n, when n = Product (p_i^e_i); a(n) = gcd(n, A047994(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 6, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 4, 1, 2, 5, 14, 3, 2, 1, 12, 1, 2, 3, 1, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 3, 2, 1, 6, 1, 20, 1, 2, 1, 12, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Comments

Records 1, 2, 6, 12, 14, 20, 24, 84, 120, 168, 240, 468, 720, 1008, 1240, 1488, 1632, 7440, 9360, 14880, 32640, ... occur at n = 1, 6, 12, 36, 56, 80, 144, 168, 240, 504, 720, 1404, 3600, 4032, 4960, 8928, 13056, 14880, 28080, 44640, 65280, ...

Crossrefs

Programs

  • PARI
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); };
    A323409(n) = gcd(n, A047994(n));

Formula

a(n) = gcd(n, A047994(n)), where A047994 is unitary phi.

A332882 If n = Product (p_j^k_j) then a(n) = numerator of Product (1 + 1/p_j^k_j).

Original entry on oeis.org

1, 3, 4, 5, 6, 2, 8, 9, 10, 9, 12, 5, 14, 12, 8, 17, 18, 5, 20, 3, 32, 18, 24, 3, 26, 21, 28, 10, 30, 12, 32, 33, 16, 27, 48, 25, 38, 30, 56, 27, 42, 16, 44, 15, 4, 36, 48, 17, 50, 39, 24, 35, 54, 14, 72, 9, 80, 45, 60, 2, 62, 48, 80, 65, 84, 24, 68, 45, 32, 72
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Numerator of sum of reciprocals of unitary divisors of n.

Examples

			1, 3/2, 4/3, 5/4, 6/5, 2, 8/7, 9/8, 10/9, 9/5, 12/11, 5/3, 14/13, 12/7, 8/5, 17/16, ...
		

Crossrefs

Programs

  • Maple
    a:= n-> numer(mul(1+i[1]^i[2], i=ifactors(n)[2])/n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]]^#[[2]] & /@ FactorInteger[n])], {n, 1, 70}] // Numerator
    Table[Sum[If[GCD[d, n/d] == 1,  1/d, 0], {d, Divisors[n]}], {n, 1, 70}] // Numerator
  • PARI
    a(n) = numerator(sumdiv(n, d, if (gcd(d, n/d)==1, 1/d))); \\ Michel Marcus, Feb 28 2020

Formula

a(n) = numerator of Sum_{d|n, gcd(d, n/d) = 1} 1/d.
a(n) = numerator of usigma(n)/n.
a(p) = p + 1, where p is prime.
a(n) = A034448(n) / A323166(n). - Antti Karttunen, Nov 13 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A332883(k) = zeta(2)/zeta(3) = 1.368432... (A306633). - Amiram Eldar, Nov 21 2022

A332883 If n = Product (p_j^k_j) then a(n) = denominator of Product (1 + 1/p_j^k_j).

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 7, 8, 9, 5, 11, 3, 13, 7, 5, 16, 17, 3, 19, 2, 21, 11, 23, 2, 25, 13, 27, 7, 29, 5, 31, 32, 11, 17, 35, 18, 37, 19, 39, 20, 41, 7, 43, 11, 3, 23, 47, 12, 49, 25, 17, 26, 53, 9, 55, 7, 57, 29, 59, 1, 61, 31, 63, 64, 65, 11, 67, 34, 23, 35
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Denominator of sum of reciprocals of unitary divisors of n.

Examples

			1, 3/2, 4/3, 5/4, 6/5, 2, 8/7, 9/8, 10/9, 9/5, 12/11, 5/3, 14/13, 12/7, 8/5, 17/16, ...
		

Crossrefs

Cf. A007947, A017666, A034448, A077610, A319677, A323166, A327158 (positions of 1's), A332881, A332882 (numerators).

Programs

  • Maple
    a:= n-> denom(mul(1+i[1]^i[2], i=ifactors(n)[2])/n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]]^#[[2]] & /@ FactorInteger[n])], {n, 1, 70}] // Denominator
    Table[Sum[If[GCD[d, n/d] == 1,  1/d, 0], {d, Divisors[n]}], {n, 1, 70}] // Denominator
  • PARI
    a(n) = denominator(sumdiv(n, d, if (gcd(d, n/d)==1, 1/d))); \\ Michel Marcus, Feb 28 2020

Formula

a(n) = denominator of Sum_{d|n, gcd(d, n/d) = 1} 1/d.
a(n) = denominator of usigma(n)/n.
a(p) = p, where p is prime.
a(n) = n / A323166(n). - Antti Karttunen, Nov 13 2021

A348929 a(n) = gcd(n, A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 12, 1, 2, 3, 1, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 36, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 72, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 2, 3, 4, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 07 2021

Keywords

Crossrefs

Differs from similar A126795 for the first time at n=36, where a(36) = 36, while A126795(36) = 12.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[n_] := GCD[n, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Nov 07 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348929(n) = gcd(n, A003959(n));

Formula

a(n) = gcd(n, A003959(n)) = gcd(n, A348507(n)) = gcd(A003959(n), A348507(n)).

A323160 a(n) = gcd(n, A323159(n)) = gcd(n, A034448(n), A048250(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 2, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 2, 3, 2, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2019

Keywords

Crossrefs

Programs

  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A323160(n) = gcd(n, gcd(A034448(n), A048250(n)));

Formula

a(n) = gcd(n, A323159(n)) = gcd(A048250(n), A323166(n)).
a(n) = gcd(n, A034448(n), A048250(n)).

A327160 Number of positive integers that are reachable from n with some combination of transitions x -> usigma(x)-x and x -> gcd(x,usigma(x)), where usigma is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

1, 2, 2, 2, 2, 1, 2, 2, 2, 4, 2, 4, 2, 5, 4, 2, 2, 6, 2, 5, 3, 6, 2, 5, 2, 4, 2, 5, 2, 4, 2, 2, 5, 6, 3, 6, 2, 7, 3, 6, 2, 4, 2, 4, 5, 5, 2, 7, 2, 7, 5, 8, 2, 4, 3, 4, 3, 4, 2, 1, 2, 7, 3, 2, 3, 4, 2, 7, 4, 8, 2, 7, 2, 7, 3, 6, 3, 3, 2, 7, 2, 6, 2, 7, 3, 6, 6, 7, 2, 1, 5, 6, 4, 8, 4, 9, 2, 9, 5, 9, 2, 4, 2, 7, 7
Offset: 1

Views

Author

Antti Karttunen, Aug 25 2019

Keywords

Comments

Question: Is this sequence well defined for every n ? If A318882 is not well defined in whole N, then neither this can be.

Examples

			From n = 30 we can reach any of the following strictly positive numbers: 30 (e.g., with an empty sequence of transitions), 42 (as A034460(30) = 42), 54 (as A034460(42) = 54; note that A034460(54) = 30 again) and 6 as A323166(30) = A323166(42) = A323166(54) = 6 = A323166(6) = A034460(6), thus a(30) = 4.
		

Crossrefs

Programs

  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A327160aux(n,xs) = if(vecsearch(xs,n),xs, xs = setunion([n],xs); if(1==n,xs, my(a=A034448(n)-n, b=gcd(A034448(n),n)); xs = A327160aux(a,xs); if((a==b),xs, A327160aux(b,xs))));
    A327160(n) = length(A327160aux(n,Set([])));

A327164 Number of iterations of x -> gcd(usigma(x),x) needed to reach a fixed point, where usigma is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 0, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 0, 2, 2, 1, 2, 2, 3, 1, 2, 2, 3, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2019

Keywords

Crossrefs

Cf. A034448, A323166, A327158 (positions of zeros).
Cf. also A326194.

Programs

Showing 1-10 of 12 results. Next