cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A332880 If n = Product (p_j^k_j) then a(n) = numerator of Product (1 + 1/p_j).

Original entry on oeis.org

1, 3, 4, 3, 6, 2, 8, 3, 4, 9, 12, 2, 14, 12, 8, 3, 18, 2, 20, 9, 32, 18, 24, 2, 6, 21, 4, 12, 30, 12, 32, 3, 16, 27, 48, 2, 38, 30, 56, 9, 42, 16, 44, 18, 8, 36, 48, 2, 8, 9, 24, 21, 54, 2, 72, 12, 80, 45, 60, 12, 62, 48, 32, 3, 84, 24, 68, 27, 32, 72
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Numerator of sum of reciprocals of squarefree divisors of n.
(6/Pi^2) * A332881(n)/a(n) is the asymptotic density of numbers that are coprime to their digital sum in base n+1 (see A094387 and A339076 for bases 2 and 10). - Amiram Eldar, Nov 24 2022

Examples

			1, 3/2, 4/3, 3/2, 6/5, 2, 8/7, 3/2, 4/3, 9/5, 12/11, 2, 14/13, 12/7, 8/5, 3/2, 18/17, ...
		

Crossrefs

Programs

  • Maple
    a:= n-> numer(mul(1+1/i[1], i=ifactors(n)[2])):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]] & /@ FactorInteger[n])], {n, 1, 70}] // Numerator
    Table[Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}], {n, 1, 70}] // Numerator
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A332880(n) = numerator(A001615(n)/n);

Formula

Numerators of coefficients in expansion of Sum_{k>=1} mu(k)^2*x^k/(k*(1 - x^k)).
a(n) = numerator of Sum_{d|n} mu(d)^2/d.
a(n) = numerator of psi(n)/n.
a(p) = p + 1, where p is prime.
a(n) = A001615(n) / A306695(n) = A001615(n) / gcd(n, A001615(n)). - Antti Karttunen, Nov 15 2021
From Amiram Eldar, Nov 24 2022: (Start)
Asymptotic means:
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A332881(k) = 15/Pi^2 = 1.519817... (A082020).
Limit_{m->oo} (1/m) * Sum_{k=1..m} A332881(k)/a(k) = Product_{p prime} (1 - 1/(p*(p+1))) = 0.704442... (A065463). (End)

A374783 Numerator of the mean unitary abundancy index of the unitary divisors of n.

Original entry on oeis.org

1, 5, 7, 9, 11, 35, 15, 17, 19, 11, 23, 21, 27, 75, 77, 33, 35, 95, 39, 99, 5, 115, 47, 119, 51, 135, 55, 135, 59, 77, 63, 65, 161, 175, 33, 19, 75, 195, 63, 187, 83, 25, 87, 207, 209, 235, 95, 77, 99, 51, 245, 243, 107, 275, 23, 255, 91, 295, 119, 231, 123, 315
Offset: 1

Views

Author

Amiram Eldar, Jul 20 2024

Keywords

Comments

The unitary abundancy index of a number k is A034448(k)/k = A332882(k)/A332883(k).
The record values of a(n)/A374784(n) are attained at the primorial numbers (A002110).
The least number k such that a(k)/A374784(k) is larger than 2, 3, 4, ..., is A002110(9) = 223092870, A002110(314) = 7.488... * 10^878, A002110(65599) = 5.373... * 10^356774, ... .

Examples

			For n = 4, 4 has 2 unitary divisors, 1 and 4. Their unitary abundancy indices are usigma(1)/1 = 1 and usigma(4)/4 = 5/4, and their mean unitary abundancy index is (1 + 5/4)/2 = 9/8. Therefore a(4) = numerator(9/8) = 9.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + 1/(2*p^e); a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); numerator(prod(i = 1, #f~, 1 + 1/(2*f[i,1]^f[i,2])));}

Formula

Let f(n) = a(n)/A374784(n). Then:
f(n) = (Sum_{d|n, gcd(d, n/d) = 1} usigma(d)/d) / ud(n), where usigma(n) is the sum of unitary divisors of n (A034448), and ud(n) is their number (A034444).
f(n) is multiplicative with f(p^e) = 1 + 1/(2*p^e).
f(n) = (Sum_{d|n, gcd(d, n/d) = 1} d*ud(d))/(n*ud(n)) = A343525(n)/(n*A034444(n)).
Dirichlet g.f. of f(n): zeta(s) * zeta(s+1) * Product_{p prime} (1 - 1/(2*p^(s+1)) - 1/(2*p^(2*s+1))).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = Product_{p prime} (1 + 1/(2*p*(p+1))) = 1.17443669198552182119... . For comparison, the asymptotic mean of the unitary abundancy index over all the positive integers is zeta(2)/zeta(3) = 1.368432... (A306633).
Lim sup_{n->oo} f(n) = oo (i.e., f(n) is unbounded).
f(n) <= A374777(n)/A374778(n) with equality if and only if n is squarefree (A005117).

A332883 If n = Product (p_j^k_j) then a(n) = denominator of Product (1 + 1/p_j^k_j).

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 7, 8, 9, 5, 11, 3, 13, 7, 5, 16, 17, 3, 19, 2, 21, 11, 23, 2, 25, 13, 27, 7, 29, 5, 31, 32, 11, 17, 35, 18, 37, 19, 39, 20, 41, 7, 43, 11, 3, 23, 47, 12, 49, 25, 17, 26, 53, 9, 55, 7, 57, 29, 59, 1, 61, 31, 63, 64, 65, 11, 67, 34, 23, 35
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Denominator of sum of reciprocals of unitary divisors of n.

Examples

			1, 3/2, 4/3, 5/4, 6/5, 2, 8/7, 9/8, 10/9, 9/5, 12/11, 5/3, 14/13, 12/7, 8/5, 17/16, ...
		

Crossrefs

Cf. A007947, A017666, A034448, A077610, A319677, A323166, A327158 (positions of 1's), A332881, A332882 (numerators).

Programs

  • Maple
    a:= n-> denom(mul(1+i[1]^i[2], i=ifactors(n)[2])/n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]]^#[[2]] & /@ FactorInteger[n])], {n, 1, 70}] // Denominator
    Table[Sum[If[GCD[d, n/d] == 1,  1/d, 0], {d, Divisors[n]}], {n, 1, 70}] // Denominator
  • PARI
    a(n) = denominator(sumdiv(n, d, if (gcd(d, n/d)==1, 1/d))); \\ Michel Marcus, Feb 28 2020

Formula

a(n) = denominator of Sum_{d|n, gcd(d, n/d) = 1} 1/d.
a(n) = denominator of usigma(n)/n.
a(p) = p, where p is prime.
a(n) = n / A323166(n). - Antti Karttunen, Nov 13 2021
Showing 1-3 of 3 results.