cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A332881 If n = Product (p_j^k_j) then a(n) = denominator of Product (1 + 1/p_j).

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 2, 3, 5, 11, 1, 13, 7, 5, 2, 17, 1, 19, 5, 21, 11, 23, 1, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 35, 1, 37, 19, 39, 5, 41, 7, 43, 11, 5, 23, 47, 1, 7, 5, 17, 13, 53, 1, 55, 7, 57, 29, 59, 5, 61, 31, 21, 2, 65, 11, 67, 17, 23, 35
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Denominator of sum of reciprocals of squarefree divisors of n.

Examples

			1, 3/2, 4/3, 3/2, 6/5, 2, 8/7, 3/2, 4/3, 9/5, 12/11, 2, 14/13, 12/7, 8/5, 3/2, 18/17, ...
		

Crossrefs

Cf. A001615, A008683, A017666, A048250, A007947, A109395, A187778 (positions of 1's), A306695, A308443, A308462, A332880 (numerators), A332883.

Programs

  • Maple
    a:= n-> denom(mul(1+1/i[1], i=ifactors(n)[2])):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]] & /@ FactorInteger[n])], {n, 1, 70}] // Denominator
    Table[Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}], {n, 1, 70}] // Denominator
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A332881(n) = denominator(A001615(n)/n);

Formula

Denominators of coefficients in expansion of Sum_{k>=1} mu(k)^2*x^k/(k*(1 - x^k)).
a(n) = denominator of Sum_{d|n} mu(d)^2/d.
a(n) = denominator of psi(n)/n.
a(p) = p, where p is prime.
a(n) = n / A306695(n) = n / gcd(n, A001615(n)). - Antti Karttunen, Nov 15 2021

A332882 If n = Product (p_j^k_j) then a(n) = numerator of Product (1 + 1/p_j^k_j).

Original entry on oeis.org

1, 3, 4, 5, 6, 2, 8, 9, 10, 9, 12, 5, 14, 12, 8, 17, 18, 5, 20, 3, 32, 18, 24, 3, 26, 21, 28, 10, 30, 12, 32, 33, 16, 27, 48, 25, 38, 30, 56, 27, 42, 16, 44, 15, 4, 36, 48, 17, 50, 39, 24, 35, 54, 14, 72, 9, 80, 45, 60, 2, 62, 48, 80, 65, 84, 24, 68, 45, 32, 72
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Numerator of sum of reciprocals of unitary divisors of n.

Examples

			1, 3/2, 4/3, 5/4, 6/5, 2, 8/7, 9/8, 10/9, 9/5, 12/11, 5/3, 14/13, 12/7, 8/5, 17/16, ...
		

Crossrefs

Programs

  • Maple
    a:= n-> numer(mul(1+i[1]^i[2], i=ifactors(n)[2])/n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]]^#[[2]] & /@ FactorInteger[n])], {n, 1, 70}] // Numerator
    Table[Sum[If[GCD[d, n/d] == 1,  1/d, 0], {d, Divisors[n]}], {n, 1, 70}] // Numerator
  • PARI
    a(n) = numerator(sumdiv(n, d, if (gcd(d, n/d)==1, 1/d))); \\ Michel Marcus, Feb 28 2020

Formula

a(n) = numerator of Sum_{d|n, gcd(d, n/d) = 1} 1/d.
a(n) = numerator of usigma(n)/n.
a(p) = p + 1, where p is prime.
a(n) = A034448(n) / A323166(n). - Antti Karttunen, Nov 13 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A332883(k) = zeta(2)/zeta(3) = 1.368432... (A306633). - Amiram Eldar, Nov 21 2022

A358975 Numbers that are coprime to their digital sum in base 3 (A053735).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 23, 27, 29, 31, 37, 41, 43, 47, 49, 51, 53, 55, 59, 61, 67, 69, 71, 73, 79, 81, 83, 85, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 123, 125, 127, 129, 131, 137, 139, 141, 143, 147, 149, 151, 153, 155, 157, 159, 161, 163, 167, 169
Offset: 1

Views

Author

Amiram Eldar, Dec 07 2022

Keywords

Comments

Numbers k such that gcd(k, A053735(k)) = 1.
All the terms are odd since if k is even then A053735(k) is even and so gcd(k, A053735(k)) >= 2.
Olivier (1975, 1976) proved that the asymptotic density of this sequence is 4/Pi^2 = 0.40528... (A185199).
The powers of 3 (A000244) are terms. These are also the only ternary Niven numbers (A064150) in this sequence.
Includes all the odd prime numbers (A065091).

Examples

			3 is a term since A053735(3) = 1, and gcd(3, 1) = 1.
		

Crossrefs

Subsequences: A000244, A065091.
Similar sequences: A094387, A339076, A358976, A358977, A358978.

Programs

  • Mathematica
    q[n_] := CoprimeQ[n, Plus @@ IntegerDigits[n, 3]]; Select[Range[200], q]
  • PARI
    is(n) = gcd(n, sumdigits(n, 3)) == 1;

A372606 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} phi(k*j).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 2, 4, 5, 6, 4, 6, 10, 9, 10, 2, 8, 10, 14, 13, 12, 6, 6, 16, 18, 22, 17, 18, 4, 12, 12, 24, 26, 28, 23, 22, 6, 12, 24, 20, 44, 34, 40, 31, 28, 4, 12, 20, 36, 28, 52, 46, 48, 37, 32, 10, 12, 30, 36, 60, 40, 76, 62, 66, 45, 42, 4, 20, 20, 42, 52, 72, 52, 92, 74, 74, 55, 46
Offset: 1

Views

Author

Seiichi Manyama, May 07 2024

Keywords

Examples

			Square array T(n,k) begins:
   1,  1,  2,  2,  4,  2,   6, ...
   2,  3,  4,  6,  8,  6,  12, ...
   4,  5, 10, 10, 16, 12,  24, ...
   6,  9, 14, 18, 24, 20,  36, ...
  10, 13, 22, 26, 44, 28,  60, ...
  12, 17, 28, 34, 52, 40,  72, ...
  18, 23, 40, 46, 76, 52, 114, ...
		

Crossrefs

Columns k=1..2 give: A002088, A049690.
Main diagonal gives A372608.

Programs

  • Mathematica
    T[n_, k_] := Sum[EulerPhi[k*j], {j, 1, n}]; Table[T[k, n-k+1], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, May 10 2024 *)
  • PARI
    T(n, k) = sum(j=1, n, eulerphi(k*j));

Formula

T(n,k) ~ (3/Pi^2) * c(k) * n^2, where c(k) = k * A007947(k)/A048250(k) = k * A332881(k) / A332880(k) is the multiplicative function defined by c(p^e) = p^(e+1)/(p+1). - Amiram Eldar, May 10 2024

A373439 Numerator of sum of reciprocals of square divisors of n.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 5, 1, 1, 1, 21, 1, 10, 1, 5, 1, 1, 1, 5, 26, 1, 10, 5, 1, 1, 1, 21, 1, 1, 1, 25, 1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 21, 50, 26, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 85, 1, 1, 1, 5, 1, 1, 1, 25, 1, 1, 26, 5, 1, 1, 1, 21, 91, 1, 1, 5, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 05 2024

Keywords

Examples

			1, 1, 1, 5/4, 1, 1, 1, 5/4, 10/9, 1, 1, 5/4, 1, 1, 1, 21/16, 1, 10/9, 1, 5/4, 1, 1, 1, 5/4, 26/25, ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Sum[x^(k^2)/(k^2 (1 - x^(k^2))), {k, 1, nmax}], {x, 0, nmax}], x] // Rest // Numerator
    f[p_, e_] := (p^2 - p^(-2*Floor[e/2]))/(p^2-1); a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 26 2024 *)
  • PARI
    a(n) = numerator(sumdiv(n, d, if (issquare(d), 1/d))); \\ Michel Marcus, Jun 05 2024

Formula

Numerators of coefficients in expansion of Sum_{k>=1} x^(k^2)/(k^2*(1 - x^(k^2))).
a(n) is the numerator of Sum_{d^2|n} 1/d^2.
From Amiram Eldar, Jun 26 2024: (Start)
Let f(n) = a(n)/A373440(n). Then:
f(n) is multiplicative with f(p^e) = (p^2 - p^(-2*floor(e/2)))/(p^2-1).
Dirichlet g.f. of f(n): zeta(s) * zeta(2*s+2).
Sum_{k=1..n} f(k) ~ zeta(4) * n. (End)

A370783 a(n) is the numerator of the sum of the reciprocals of the squarefree divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 02 2024

Keywords

Examples

			Fractions begin with: 1, 1, 1, 3/2, 1, 1, 1, 3/2, 4/3, 1, 1, 3/2, ...
		

Crossrefs

Cf. A005117, A057521, A157289, A295295, A332880, A370784 (denominators).

Programs

  • Mathematica
    a[n_] := Numerator[Times @@ (1 + 1/Select[FactorInteger[n], Last[#] > 1 &][[;; , 1]])]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); numerator(prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + 1/f[i,1])));}

Formula

a(n) = A332880(A057521(n)).
Let f(n) = a(n)/A370784(n):
f(n) is multiplicative with f(p) = 1 and f(p^e) = 1 + 1/p for e >= 2.
f(n) = 1 if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = zeta(3)/zeta(6) = 1.181564... (A157289) (Jakimczuk, 2024).
Showing 1-6 of 6 results.