cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A332880 If n = Product (p_j^k_j) then a(n) = numerator of Product (1 + 1/p_j).

Original entry on oeis.org

1, 3, 4, 3, 6, 2, 8, 3, 4, 9, 12, 2, 14, 12, 8, 3, 18, 2, 20, 9, 32, 18, 24, 2, 6, 21, 4, 12, 30, 12, 32, 3, 16, 27, 48, 2, 38, 30, 56, 9, 42, 16, 44, 18, 8, 36, 48, 2, 8, 9, 24, 21, 54, 2, 72, 12, 80, 45, 60, 12, 62, 48, 32, 3, 84, 24, 68, 27, 32, 72
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Numerator of sum of reciprocals of squarefree divisors of n.
(6/Pi^2) * A332881(n)/a(n) is the asymptotic density of numbers that are coprime to their digital sum in base n+1 (see A094387 and A339076 for bases 2 and 10). - Amiram Eldar, Nov 24 2022

Examples

			1, 3/2, 4/3, 3/2, 6/5, 2, 8/7, 3/2, 4/3, 9/5, 12/11, 2, 14/13, 12/7, 8/5, 3/2, 18/17, ...
		

Crossrefs

Programs

  • Maple
    a:= n-> numer(mul(1+1/i[1], i=ifactors(n)[2])):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]] & /@ FactorInteger[n])], {n, 1, 70}] // Numerator
    Table[Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}], {n, 1, 70}] // Numerator
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A332880(n) = numerator(A001615(n)/n);

Formula

Numerators of coefficients in expansion of Sum_{k>=1} mu(k)^2*x^k/(k*(1 - x^k)).
a(n) = numerator of Sum_{d|n} mu(d)^2/d.
a(n) = numerator of psi(n)/n.
a(p) = p + 1, where p is prime.
a(n) = A001615(n) / A306695(n) = A001615(n) / gcd(n, A001615(n)). - Antti Karttunen, Nov 15 2021
From Amiram Eldar, Nov 24 2022: (Start)
Asymptotic means:
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A332881(k) = 15/Pi^2 = 1.519817... (A082020).
Limit_{m->oo} (1/m) * Sum_{k=1..m} A332881(k)/a(k) = Product_{p prime} (1 - 1/(p*(p+1))) = 0.704442... (A065463). (End)

A332883 If n = Product (p_j^k_j) then a(n) = denominator of Product (1 + 1/p_j^k_j).

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 7, 8, 9, 5, 11, 3, 13, 7, 5, 16, 17, 3, 19, 2, 21, 11, 23, 2, 25, 13, 27, 7, 29, 5, 31, 32, 11, 17, 35, 18, 37, 19, 39, 20, 41, 7, 43, 11, 3, 23, 47, 12, 49, 25, 17, 26, 53, 9, 55, 7, 57, 29, 59, 1, 61, 31, 63, 64, 65, 11, 67, 34, 23, 35
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Denominator of sum of reciprocals of unitary divisors of n.

Examples

			1, 3/2, 4/3, 5/4, 6/5, 2, 8/7, 9/8, 10/9, 9/5, 12/11, 5/3, 14/13, 12/7, 8/5, 17/16, ...
		

Crossrefs

Cf. A007947, A017666, A034448, A077610, A319677, A323166, A327158 (positions of 1's), A332881, A332882 (numerators).

Programs

  • Maple
    a:= n-> denom(mul(1+i[1]^i[2], i=ifactors(n)[2])/n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]]^#[[2]] & /@ FactorInteger[n])], {n, 1, 70}] // Denominator
    Table[Sum[If[GCD[d, n/d] == 1,  1/d, 0], {d, Divisors[n]}], {n, 1, 70}] // Denominator
  • PARI
    a(n) = denominator(sumdiv(n, d, if (gcd(d, n/d)==1, 1/d))); \\ Michel Marcus, Feb 28 2020

Formula

a(n) = denominator of Sum_{d|n, gcd(d, n/d) = 1} 1/d.
a(n) = denominator of usigma(n)/n.
a(p) = p, where p is prime.
a(n) = n / A323166(n). - Antti Karttunen, Nov 13 2021

A372606 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} phi(k*j).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 2, 4, 5, 6, 4, 6, 10, 9, 10, 2, 8, 10, 14, 13, 12, 6, 6, 16, 18, 22, 17, 18, 4, 12, 12, 24, 26, 28, 23, 22, 6, 12, 24, 20, 44, 34, 40, 31, 28, 4, 12, 20, 36, 28, 52, 46, 48, 37, 32, 10, 12, 30, 36, 60, 40, 76, 62, 66, 45, 42, 4, 20, 20, 42, 52, 72, 52, 92, 74, 74, 55, 46
Offset: 1

Views

Author

Seiichi Manyama, May 07 2024

Keywords

Examples

			Square array T(n,k) begins:
   1,  1,  2,  2,  4,  2,   6, ...
   2,  3,  4,  6,  8,  6,  12, ...
   4,  5, 10, 10, 16, 12,  24, ...
   6,  9, 14, 18, 24, 20,  36, ...
  10, 13, 22, 26, 44, 28,  60, ...
  12, 17, 28, 34, 52, 40,  72, ...
  18, 23, 40, 46, 76, 52, 114, ...
		

Crossrefs

Columns k=1..2 give: A002088, A049690.
Main diagonal gives A372608.

Programs

  • Mathematica
    T[n_, k_] := Sum[EulerPhi[k*j], {j, 1, n}]; Table[T[k, n-k+1], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, May 10 2024 *)
  • PARI
    T(n, k) = sum(j=1, n, eulerphi(k*j));

Formula

T(n,k) ~ (3/Pi^2) * c(k) * n^2, where c(k) = k * A007947(k)/A048250(k) = k * A332881(k) / A332880(k) is the multiplicative function defined by c(p^e) = p^(e+1)/(p+1). - Amiram Eldar, May 10 2024

A373440 Denominator of sum of reciprocals of square divisors of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 16, 1, 1, 1, 18, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 18, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1, 1, 4, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 05 2024

Keywords

Examples

			1, 1, 1, 5/4, 1, 1, 1, 5/4, 10/9, 1, 1, 5/4, 1, 1, 1, 21/16, 1, 10/9, 1, 5/4, 1, 1, 1, 5/4, 26/25, ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Sum[x^(k^2)/(k^2 (1 - x^(k^2))), {k, 1, nmax}], {x, 0, nmax}], x] // Rest // Denominator
    f[p_, e_] := (p^2 - p^(-2*Floor[e/2]))/(p^2-1); a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 26 2024 *)
  • PARI
    a(n) = denominator(sumdiv(n, d, if (issquare(d), 1/d))); \\ Michel Marcus, Jun 05 2024

Formula

Denominators of coefficients in expansion of Sum_{k>=1} x^(k^2)/(k^2*(1-x^(k^2))).
a(n) is the denominator of Sum_{d^2|n} 1/d^2.

A370784 a(n) is the denominator of the sum of the reciprocals of the squarefree divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 5, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 7, 5, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 02 2024

Keywords

Crossrefs

Cf. A005117, A057521, A295295, A332881, A370783 (numerators).

Programs

  • Mathematica
    a[n_] := Denominator[Times @@ (1 + 1/Select[FactorInteger[n], Last[#] > 1 &][[;; , 1]])]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); denominator(prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + 1/f[i,1])));}

Formula

a(n) = A332881(A057521(n)).
a(n) = 1 if n is squarefree (A005117).
Showing 1-5 of 5 results.