A066874 Number of partitions of n into unitary divisors of n.
1, 2, 2, 2, 2, 8, 2, 2, 2, 11, 2, 12, 2, 14, 14, 2, 2, 17, 2, 17, 18, 20, 2, 20, 2, 23, 2, 22, 2, 742, 2, 2, 26, 29, 26, 27, 2, 32, 30, 29, 2, 1654, 2, 32, 32, 38, 2, 36, 2, 41, 38, 37, 2, 44, 38, 38, 42, 47, 2, 3004, 2, 50, 42, 2, 44, 5257, 2, 47, 50, 5066, 2, 47, 2, 59, 54, 52, 50
Offset: 1
Examples
a(12) = 12 because the unitary divisors of 12 are 1, 3, 4 and 12; and the partitions are 12, 4+4+4, 4+4+3+1, 4+4+(4x1), 4+3+3+1+1, 4+3+(5x1), 4+(8x1), 3+3+3+3, 3+3+3+1+1+1, 3+3+(6x1), 3+(9x1) and 12x1.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10001 (first 329 terms by Antti Karttunen)
- David A. Corneth, PARI program
Programs
-
PARI
unitary_divisors(n) = select(d -> (1==gcd(d,n/d)), divisors(n)); partitions_into(n,parts,from=1) = if(!n,1,my(k = #parts, s=0); for(i=from,k,if(parts[i]<=n, s += partitions_into(n-parts[i],parts,i))); (s)); A066874(n) = partitions_into(n,vecsort(unitary_divisors(n), , 4)); \\ Antti Karttunen, Aug 06 2018
-
PARI
See Corneth link. \\ David A. Corneth, Aug 12 2018
Extensions
More terms from David Wasserman, Nov 21 2002
Comments