cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A357323 Numbers k such that k and k+2 are both unitary untouchable numbers (A063948).

Original entry on oeis.org

2, 3, 5, 30756, 34182, 46128, 51816, 56352, 72522, 86640, 88896, 119796, 133062, 133618, 149682, 164290, 207282, 207642, 213636, 245708, 257820, 261156, 279730, 283050, 286356, 286858, 310842, 318060, 327300, 339402, 339612, 349030, 360390, 371820, 377940, 384576, 396090
Offset: 1

Views

Author

Amiram Eldar, Sep 24 2022

Keywords

Comments

Except for k=3, are there any other numbers k such that k, k+2 and k+4 are all unitary untouchable numbers? There are no such numbers below 10^6.

Crossrefs

The unitary version of A231964.
Cf. A063948.

Programs

  • Mathematica
    u = Cases[Import["https://oeis.org/A063948/b063948.txt", "Table"], {, }][[;; , 2]]; Select[u, MemberQ[u, # + 2] &]

A064000 Unitary untouchable numbers of second kind: numbers n such that usigma(x) = n has no solution, where usigma(x) (A034448) is the sum of unitary divisors of x.

Original entry on oeis.org

2, 7, 11, 13, 15, 16, 19, 21, 22, 23, 25, 27, 29, 31, 34, 35, 37, 39, 41, 43, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 66, 67, 69, 71, 73, 75, 76, 77, 79, 81, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 101, 103, 105, 106, 107, 109, 111, 113, 115, 116
Offset: 1

Views

Author

Labos Elemer and Felice Russo, Sep 05 2001

Keywords

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Sum[ Boole[GCD[d, n/d] == 1]*d, {d, Divisors[n]}]; untouchableQ[n_] := (r = True; x = 1; While[x <= n, If[usigma[x] == n, r = False; Break[], x++]]; r); Select[Range[120], untouchableQ] (* Jean-François Alcover, Jan 03 2013 *)
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    lista(kmax) = {my(v = vector(kmax), s); for(k = 1, kmax, s = usigma(k); if(s <= kmax, v[s]++)); for(k = 1, kmax, if(v[k] == 0, print1(k, ", ")))}; \\ Amiram Eldar, Jun 09 2024

Formula

Suppose usigma(x) = n. Then by definition usigma(x) = n > 1 for n > 1. Let x be a prime. Then usigma(x) = x+1 and so n = x+1. For x not prime, of course, x+1 < n. So in general x <= n-1.

Extensions

Edited by N. J. A. Sloane, May 04 2007

A324938 a(n) = the number of values of m such that the sum of proper unitary divisors of m (A034460) is n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 2, 1, 2, 1, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 4, 3, 2, 3, 3, 3, 4, 4, 3, 3, 3, 5, 4, 5, 4, 5, 2, 4, 4, 5, 4, 5, 3, 5, 5, 5, 2, 6, 3, 6, 4, 6, 3, 7, 3, 6, 4, 5, 3, 7, 3, 5, 4, 6, 2, 8, 2, 6, 5, 7, 2, 8, 4, 6, 7, 7, 4, 9, 2, 7, 4, 5, 4, 9, 3, 9
Offset: 2

Views

Author

Amiram Eldar, Sep 05 2019

Keywords

Comments

The unitary version of A048138.
The offset is 2 as in A048138 since there are infinitely many numbers (all the powers of primes) for which A034460 = 1.

Examples

			a(8) = 2 since 8 is the sum of the proper unitary divisors of 10 (1 + 2 + 5) and 12 (1 + 3 + 4).
		

Crossrefs

Programs

  • Mathematica
    us[1] = 0; us[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n;  m = 100; v = Table[0, {m}]; Do[u = us[k]; If[2 <= u <= m, v[[u]]++], {k, 1, m^2}]; Rest @ v

Formula

a(A063948(n)) = 0.

A324277 Infinitary untouchable numbers: numbers that are not the sum of aliquot infinitary divisors of any number.

Original entry on oeis.org

2, 3, 4, 5, 38, 68, 80, 128, 158, 164, 188, 192, 206, 212, 224, 278, 290, 308, 326, 368, 380, 398, 416, 432, 458, 518, 530, 536, 542, 548, 578, 584, 600, 626, 632, 692, 702, 710, 752, 758, 770, 782, 788, 818, 822, 836, 852, 872, 896, 902, 926, 938, 968, 998
Offset: 1

Views

Author

Amiram Eldar, Feb 20 2019

Keywords

Crossrefs

Cf. A049417, A126168, A005114, A063948 (unitary), A324276 (bi-unitary), A324278 (exponential).

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := isigma[n] = Times @@ (fun @@@ FactorInteger[n]); untouchableQ[n_] := Catch[ Do[ If[n == isigma[k]-k, Throw[True]], {k, 0, (n-1)^2}]] === Null; Reap[ Table[ If[ untouchableQ[n], Sow[n]], {n, 2, 1000}]][[2, 1]] (* after Jean-François Alcover at A005114 *)

A324276 Bi-unitary untouchable numbers: numbers that are not the sum of aliquot bi-unitary divisors of any number.

Original entry on oeis.org

2, 3, 4, 5, 38, 68, 80, 96, 98, 128, 138, 146, 158, 164, 180, 188, 192, 206, 208, 210, 212, 222, 224, 248, 264, 278, 290, 300, 304, 308, 324, 326, 328, 338, 360, 374, 380, 390, 398, 416, 418, 420, 430, 432, 458, 476, 480, 488, 498, 516, 518, 530, 536, 542, 548
Offset: 1

Views

Author

Amiram Eldar, Feb 20 2019

Keywords

Crossrefs

Cf. A188999, A005114, A063948 (unitary), A324277 (infinitary), A324278 (exponential), A331970.

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := bsigma[n] = Times @@ (fun @@@ FactorInteger[n]); untouchableQ[n_] := Catch[ Do[ If[n == bsigma[k]-k, Throw[True]], {k, 0, (n-1)^2}]] === Null; Reap[ Table[ If[ untouchableQ[n], Sow[n]], {n, 2, 550}]][[2, 1]] (* after Jean-François Alcover at A005114 *)

A325177 Unitary highly touchable numbers: Numbers m > 1 such that a record number of numbers k have m as the sum of the proper unitary divisors of k.

Original entry on oeis.org

2, 6, 8, 12, 22, 33, 49, 55, 67, 79, 91, 115, 121, 151, 169, 175, 181, 211, 295, 301, 361, 391, 421, 481, 511, 571, 631, 781, 841, 991, 1051, 1171, 1231, 1261, 1321, 1471, 1561, 1681, 1891, 2101, 2311, 2731, 3151, 3361, 3571, 3991, 4201, 4291, 4411, 4621, 5251
Offset: 1

Views

Author

Amiram Eldar, Sep 05 2019

Keywords

Comments

The unitary version of A238895.

Crossrefs

Programs

  • Mathematica
    us[1] = 0; us[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n;  m = 300; v = Table[0, {m}]; Do[u = us[k]; If[2 <= u <= m, v[[u]]++], {k, 1, m^2}]; s = {}; vm = -1; Do[If[v[[k]] > vm, vm = v[[k]]; AppendTo[s, k]], {k, 2, m}]; s

A357324 Numbers k such that there is a unique m for which the sum of the aliquot unitary divisors of m (A034460) is k.

Original entry on oeis.org

6, 9, 11, 13, 128, 150, 164, 222, 224, 332, 338, 390, 404, 416, 420, 458, 510, 548, 558, 570, 576, 582, 584, 598, 660, 668, 750, 788, 800, 810, 818, 822, 836, 852, 878, 884, 926, 930, 1046, 1118, 1200, 1202, 1230, 1244, 1250, 1260, 1284, 1298, 1304, 1382, 1422, 1472, 1478
Offset: 1

Views

Author

Amiram Eldar, Sep 24 2022

Keywords

Comments

Numbers k such that A324938(k) = 1.

Crossrefs

The unitary version of A057709.

Programs

  • Mathematica
    us[1] = 0; us[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n; m = 1500; v = Table[0, {m}]; Do[u = us[k]; If[2 <= u <= m, v[[u]]++], {k, 1, m^2}]; Position[v, 1] // Flatten

Formula

a(n) = A034460(A357325(n)).

A306748 Unitary untouchable numbers with a record gap to the next unitary untouchable number.

Original entry on oeis.org

2, 5, 7, 998, 15402, 21878, 382032
Offset: 1

Views

Author

Amiram Eldar, Mar 07 2019

Keywords

Comments

The record gap values are 1, 2, 367, 544, 556, 780, 782.

Examples

			5 is in the sequence since it is a unitary untouchable number and the next unitary untouchable number after it is 7 = 5 + 2 with a record gap of 2. The next gap which is larger than 2 occurs at 7 which is followed by 374 = 7 + 367.
		

Crossrefs

A372740 Coreful untouchable numbers: numbers that are not the sum of aliquot coreful divisors (A336563) of any number.

Original entry on oeis.org

1, 4, 8, 9, 16, 20, 25, 27, 28, 32, 40, 44, 45, 48, 49, 50, 52, 54, 63, 64, 68, 72, 75, 76, 81, 88, 92, 99, 100, 104, 108, 116, 117, 121, 124, 125, 128, 136, 144, 147, 148, 152, 153, 160, 162, 164, 169, 171, 172, 175, 176, 184, 188, 189, 192, 196, 200, 207, 208
Offset: 1

Views

Author

Amiram Eldar, May 12 2024

Keywords

Comments

A coreful divisor d of n is a divisor that is divisible by every prime that divides n (see also A307958).
Numbers k such that A372739(k) = 0.
Numbers that are not in the range of A336563.
Except for 1, all the terms are not squarefree (A013929), because if k is squarefree (A005117), and there is a prime p such that p|k, then A336563(p*k) = k.
Includes all the squares of primes (A001248).
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are , 4, 29, 281, 2762, 27690, ... . Apparently, the asymptotic density of this sequence exists and equals 0.27... .

Crossrefs

A001248 is a subsequence.
Similar sequences: A005114, A063948 (unitary), A324276 (bi-unitary), A324277 (infinitary).

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; seq[max_] := Module[{v = Table[0, {max}], i}, Do[i = s[k]; If[0 < i <= max, v[[i]]++], {k, 1, max^2}]; Position[v, _?(# == 0 &)] // Flatten]; seq[200]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1) - 1)/(f[i, 1] - 1) - 1) - n;}
    lista(nmax) = {my(v = vector(nmax), i); for(k = 1, nmax^2, i = s(k); if(i > 0 && i <= nmax, v[i]++)); for(k = 1, nmax, if(v[k] == 0, print1(k, ", ")));}

A324278 Exponential untouchable numbers: numbers that are not the sum of aliquot exponential divisors of any number.

Original entry on oeis.org

1, 4, 8, 9, 16, 20, 25, 27, 28, 32, 40, 44, 45, 49, 52, 54, 63, 64, 68, 75, 76, 81, 88, 92, 96, 99, 104, 108, 116, 117, 121, 124, 125, 128, 136, 144, 147, 148, 152, 153, 160, 164, 169, 171, 172, 175, 176, 184, 188, 189, 192, 196, 200, 207, 208, 212, 216, 224
Offset: 1

Views

Author

Amiram Eldar, Feb 20 2019

Keywords

Comments

The terms are conjectural and based on a search for solutions to esigma(x) - x = k for k in the range of the data section and x < 10^12 (esigma(x) - x = A051377(x) - x = A126164(x) is the sum of aliquot exponential divisors of x). - Amiram Eldar, Jan 22 2020

Crossrefs

Cf. A051377, A126164, A005114, A063948 (unitary), A324276 (bi-unitary), A324277 (infinitary).

Programs

  • Mathematica
    fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := esigma[n] = Times @@ fun @@@ FactorInteger[n]; untouchableQ[n_] := Catch[ Do[ If[n == esigma[k]-k, Throw[True]], {k, 0, (n+1)^2}]] === Null; Reap[ Table[ If[ untouchableQ[n], Sow[n]], {n, 1, 130}]][[2, 1]] (* after Jean-François Alcover at A005114 *)

Extensions

Data corrected by Amiram Eldar, Jan 22 2020
Showing 1-10 of 13 results. Next