A064064
n-th step is to add a(n) to each previous number a(k) (including itself, i.e., k <= n) to produce n+1 more terms of the sequence, starting with a(0)=1.
Original entry on oeis.org
1, 2, 3, 4, 4, 5, 6, 5, 6, 7, 8, 5, 6, 7, 8, 8, 6, 7, 8, 9, 9, 10, 7, 8, 9, 10, 10, 11, 12, 6, 7, 8, 9, 9, 10, 11, 10, 7, 8, 9, 10, 10, 11, 12, 11, 12, 8, 9, 10, 11, 11, 12, 13, 12, 13, 14, 9, 10, 11, 12, 12, 13, 14, 13, 14, 15, 16, 6, 7, 8, 9, 9, 10, 11, 10, 11, 12, 13, 10, 7, 8, 9, 10, 10
Offset: 0
Start with (1). So after initial step we have (*1*, 1+1 = 2), then (1, *2*, 1+2 = 3, 2+2 = 4), then (1, 2, *3*, 4, 1+3 = 4, 2+3 = 5, 3+3 = 6), then (1, 2, 3, *4*, 4, 5, 6, 1+4 = 5, 2+4 = 6, 3+4 = 7, 4+4 = 8), then (1, 2, 3, 4, *4*, 5, 6, 5, 6, 7, 8, 1+4 = 5, 2+4 = 6, 3+4 = 7, 4+4 = 8, 4+4 = 8), etc.
- Rémy Sigrist, Table of n, a(n) for n = 0..10000
- C. Colijn and G. Plazzotta, A Metric on Phylogenetic Tree Shapes, Systematic Biology, volume 67, number 1, January 2018, pages 113-126, with section 2.3 number of tips v_a(1) = a(n) for tree R_a = n+1.
- N. A. Rosenberg, On the Colijn-Plazzotta numbering scheme for unlabeled binary rooted trees, Discr. Appl. Math. 291 (2021), 88-98.
-
a[0]=1; a[n_]:=With[{s = Floor[(Sqrt[8*n - 7] - 1)/2]}, a[s] + a[n - s*(s + 1)/2 - 1]]; Array[a,84,0] (* Harry Richman, Feb 24 2024 *)
-
a(n) = if (n==0, return (1), return (a(A002262(n-1))+a(A003056(n-1)))) \\ Rémy Sigrist, Aug 07 2017
A356917
Irregular triangle read by rows where row n lists the Colijn-Plazzotta subtree numbers, in ascending order, of each vertex of the rooted binary tree with their tree number n.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 2, 2, 3, 6, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 7, 1, 1, 1, 1, 1, 2, 2, 4, 8, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 9, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 10, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 11
Offset: 1
Triangle begins:
k=1 2 3 4 5 6 7 8 9 10 11
n=1: 1,
n=2: 1, 1, 2,
n=3: 1, 1, 1, 2, 3,
n=4: 1, 1, 1, 1, 2, 2, 4,
n=5: 1, 1, 1, 1, 2, 3, 5,
n=6: 1, 1, 1, 1, 1, 2, 2, 3, 6,
n=7: 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 7,
n=8: 1, 1, 1, 1, 1, 2, 2, 4, 8,
Tree n=6 and its subtree numbers are as follows and row 6 is these subtree numbers in ascending order.
6 root
/ \
3 2
/ \ / \
2 1 1 1
/ \
1 1
- Kevin Ryde, Table of n, a(n) for rows 1..500, flattened
- Caroline Colijn and Giacomo Plazzotta, A Metric on Phylogenetic Tree Shapes, Systematic Biology, volume 67, number 1, January 2018, pages 113-126, see section 2.3 where their L_n = row n here.
- Kevin Ryde, PARI/GP Code
A356918
Triangle read by rows where T(n,k) is Colijn and Plazzotta's distance metric d_1(n,k) between rooted binary tree numbers n and k, for 1 <= k <= n.
Original entry on oeis.org
0, 2, 0, 4, 2, 0, 6, 4, 4, 0, 6, 4, 2, 4, 0, 8, 6, 4, 4, 4, 0, 10, 8, 6, 6, 6, 4, 0, 8, 6, 6, 2, 6, 4, 6, 0, 10, 8, 8, 4, 8, 6, 6, 4, 0, 12, 10, 8, 6, 8, 6, 6, 6, 4, 0, 14, 12, 12, 8, 12, 10, 10, 8, 6, 6, 0, 8, 6, 4, 6, 2, 4, 6, 6, 8, 8, 12, 0
Offset: 1
Triangle begins:
k=1 2 3 4 5 6 7 8
n=1: 0,
n=2: 2, 0,
n=3: 4, 2, 0,
n=4: 6, 4, 4, 0,
n=5: 6, 4, 2, 4, 0,
n=6: 8, 6, 4, 4, 4, 0,
n=7: 10, 8, 6, 6, 6, 4, 0,
n=8: 8, 6, 6, 2, 6, 4, 6, 0,
...
For n=68,k=4, rows 68 and 4 from A356917 are as follows and their multiset symmetric difference has T(68,4) = 8 terms.
n=68: 1,1,1,1,1,1, 2, 3, 5,12,68
k= 4: 1,1,1,1, 2,2, 4
diff: 1,1, 2, 3, 4, 5,12,68
- Kevin Ryde, Table of n, a(n) for rows 1..150, flattened
- Caroline Colijn, Treetop, R Code, see labeldistance() and distunlab().
- Caroline Colijn and Giacomo Plazzotta, A Metric on Phylogenetic Tree Shapes, Systematic Biology, volume 67, number 1, January 2018, pages 113-126, see section 2.3 d_1.
- Kevin Ryde, PARI/GP Code
-
\\ See links.
-
# See links.
A357701
Irregular triangle read by rows where row n is the vertex depths of the rooted binary tree with Colijn-Plazzotta tree number n, traversed in pre-order, numerically larger child first.
Original entry on oeis.org
0, 0, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 2, 1, 2, 2, 0, 1, 2, 3, 3, 2, 1, 0, 1, 2, 3, 3, 2, 1, 2, 2, 0, 1, 2, 3, 3, 2, 1, 2, 3, 3, 2, 0, 1, 2, 3, 3, 2, 3, 3, 1, 0, 1, 2, 3, 3, 2, 3, 3, 1, 2, 2, 0, 1, 2, 3, 3, 2, 3, 3, 1, 2, 3, 3, 2, 0, 1, 2, 3, 3, 2, 3, 3, 1, 2, 3, 3, 2, 3, 3
Offset: 1
Triangle begins:
k=1 2 3 4 5 6 7 8 9 10 11
n=1: 0,
n=2: 0, 1, 1,
n=3: 0, 1, 2, 2, 1,
n=4: 0, 1, 2, 2, 1, 2, 2,
n=5: 0, 1, 2, 3, 3, 2, 1,
n=6: 0, 1, 2, 3, 3, 2, 1, 2, 2,
n=7: 0, 1, 2, 3, 3, 2, 1, 2, 3, 3, 2,
n=8: 0, 1, 2, 3, 3, 2, 3, 3, 1,
n=9: 0, 1, 2, 3, 3, 2, 3, 3, 1, 2, 2,
For n=6, tree 6 is as follows, with vertices numbered by pre-order traversal (column number k),
1 depth=0
/ \
2 7 depth=1
/ \ / \
3 6 8 9 depth=2
/ \
4 5 depth=3
row(6) = depths 0,1,2,3,3,2,1,2,2
- Kevin Ryde, Table of n, a(n) for rows 1..500, flattened
- Caroline Colijn and Giacomo Plazzotta, A Metric on Phylogenetic Tree Shapes, Systematic Biology, volume 67, number 1, January 2018, pages 113-126.
- Kevin Ryde, PARI/GP Code
-
yList=FoldList[{#1,#2}&,1,Range[2,20]]//Flatten;x[n_]:=Floor[Sqrt[2*n]+1/2];y[n_]:=yList[[n]];row[1]={0};row[n_]:=row[n]={0}~Join~(row[x[n-1]]+1)~Join~(row[y[n-1]]+1);Flatten[Array[row,11]] (* Shenghui Yang, Apr 15 2025 *)
-
\\ See links.
A357702
Path length (total depths of vertices) of the rooted binary tree with Colijn-Plazzotta tree number n.
Original entry on oeis.org
0, 2, 6, 10, 12, 16, 22, 18, 22, 28, 34, 20, 24, 30, 36, 38, 26, 30, 36, 42, 44, 50, 34, 38, 44, 50, 52, 58, 66, 28, 32, 38, 44, 46, 52, 60, 54, 34, 38, 44, 50, 52, 58, 66, 60, 66, 42, 46, 52, 58, 60, 66, 74, 68, 74, 82, 50, 54, 60, 66, 68, 74, 82, 76, 82, 90
Offset: 1
For n=3, tree number 3 and the depth of each of its vertices is
0 root
/ \
1 1 total depths
/ \ a(3) = 0 + 1+1 + 2+2 = 6
2 2
Showing 1-5 of 5 results.
Comments