cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A078145 Length of period of continued fraction for square root of 1+n!.

Original entry on oeis.org

1, 2, 4, 0, 0, 40, 0, 153, 558, 3074, 4285, 22602, 180544, 766146, 766082, 524570, 9932193, 5193268, 763601450, 4284694240, 3059999982, 48742214702, 6354126960, 1975806716944, 929707144775
Offset: 1

Views

Author

Labos Elemer, Nov 25 2002

Keywords

Examples

			Period for sqrt(3!+1) = sqrt(7) = {1,1,1,4}, a(3) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Last[ContinuedFraction[Sqrt[1+n! ]]]], {n, 1, 14}]

Formula

a(n) = A003285(A038507(n)). - Michel Marcus, Sep 25 2019

Extensions

a(15)-a(20) from Vaclav Kotesovec, Aug 28 2019
a(21) from Chai Wah Wu, Sep 23 2019
a(22)-a(23) from Chai Wah Wu, Sep 25 2019
a(24)-a(25) from Chai Wah Wu, Oct 01 2019

A078146 Length of period of continued fraction for square root of -1 + n!.

Original entry on oeis.org

0, 0, 1, 4, 4, 28, 4, 12, 64, 600, 380, 10908, 23720, 168072, 5924, 1643064, 1896378, 685042, 16089346, 695623764, 722967470, 6166991370, 18958904524, 248206315456, 644968837504, 1200298458074
Offset: 1

Views

Author

Labos Elemer, Nov 25 2002

Keywords

Examples

			Period for sqrt(4!-1) = sqrt(23) = {1,1,1,4}, a(4) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Last[ContinuedFraction[Sqrt[ -1+n! ]]]], {n, 1, 14}]

Formula

a(n) = A003285(A033312(n)). - Michel Marcus, Sep 25 2019

Extensions

a(15)-a(21) from Amiram Eldar, Aug 28 2019
a(22)-a(23) from Chai Wah Wu, Sep 24 2019
a(24)-a(26) from Chai Wah Wu, Sep 30 2019
Showing 1-2 of 2 results.