cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064037 Number of walks of length 2n on cubic lattice, starting and finishing at origin and staying in first (nonnegative) octant.

Original entry on oeis.org

1, 3, 24, 285, 4242, 73206, 1403028, 29082339, 640672890, 14818136190, 356665411440, 8874875097270, 227135946200940, 5955171596514900, 159439898653636320, 4347741997166750235, 120493374240909299130, 3387806231071627372590, 96488484001399878973200
Offset: 0

Views

Author

Henry Bottomley, Aug 23 2001

Keywords

Examples

			a(1)=3 and a(2)=24 since if the possible steps are Right, Left, Up, Down, Forwards and Backwards, then the two-step paths are FB, RL and UD, while the four-step paths are FBFB, FBRL, FBUD, FFBB, FRBL, FRLB, FUBD, FUDB, RFBL, RFLB, RLFB, RLRL, RLUD, RRLL, RUDL, RULD, UDFB, UDRL, UDUD, UFBD, UFDB, URDL, URLD, UUDD.
		

Crossrefs

Cf. A064036. The two- and one-dimensional equivalents are A005568 and A000108.

Programs

  • Maple
    f := -3*x+(1+sqrt(1-40*x+144*x^2))/4;
    H := (1-2*f)*f*hypergeom([1/6,1/3],[1],27*(1-2*f)*f^2)^2/sqrt(1+6*f);
    r2 := (1-4*x)*(36*x-1)*(1920*x^2+166*x+1)*x^2;
    r1 := -(138240*x^4+7776*x^3+200*x^2-92*x-1)*x;
    r0 := 19800*x^3+764*x^2-86*x-1;
    ogf := (r2*diff(H,x,x)+r1*diff(H,x)+r0*H)/(5760*x^4) + 1/(2*x);
    series(ogf, x=0, 30); # Mark van Hoeij, Apr 19 2013
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, 2*n+1, ((8*n-4)*(5*n^2+10*n+3)
           *a(n-1)-36*(2*n-1)*(2*n-3)*(n-1)*a(n-2))/((n+1)*(n+2)*(n+3)))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 29 2019
  • Mathematica
    Table[Sum[Binomial[2*n, 2*j] * CatalanNumber[j] * CatalanNumber[j+1] * CatalanNumber[n-j], {j, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 09 2019 *)
  • PARI
    C(n,k) = binomial(n,k);
    c(n) = binomial(2*n,n)/(n+1);
    a(n) = sum(j=0,n, C(2*n, 2*j)*c(j)*c(j+1)*c(n-j));
    /* Joerg Arndt, Apr 19 2013 */

Formula

a(n) = Sum_{j=0..n} C(2n, 2j)*c(j)*c(j+1)*c(n-j) where c(k)=A000108(k).
G.f. is a large expression in terms of hypergeometric functions and sqrt's, see Maple program. - Mark van Hoeij, Apr 19 2013
a(n) = binomial(2*n,n)*((7*n+11)*A002893(n+1)-(9*n+9)*A002893(n))/(2*(n+1)*(n+2)^2*(n+3)). - Mark van Hoeij, Apr 19 2013
a(n) ~ 2^(2*n - 2) * 3^(2*n + 9/2) / (Pi^(3/2) * n^(9/2)). - Vaclav Kotesovec, Jun 09 2019
D-finite with recurrence: (n+3)*(n+2)*(n+1)*a(n) -4*(2*n-1)*(5*n^2+10*n+3)*a(n-1) +36*(n-1)*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Feb 20 2020

Extensions

Added more terms, Joerg Arndt, Apr 19 2013