cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A349264 Generalized Euler numbers, a(n) = n!*[x^n](sec(4*x)*(sin(4*x) + 1)).

Original entry on oeis.org

1, 4, 16, 128, 1280, 16384, 249856, 4456448, 90767360, 2080374784, 52975108096, 1483911200768, 45344872202240, 1501108249821184, 53515555843342336, 2044143848640217088, 83285910482761809920, 3605459138582973251584, 165262072909347030040576, 7995891855149741436305408
Offset: 0

Views

Author

Peter Luschny, Nov 20 2021

Keywords

Examples

			Exponential generating functions of generalized Euler numbers in context:
egf1 = sec(1*x)*(sin(x) + 1).
   [A000111, A000364, A000182]
egf2 = sec(2*x)*(sin(x) + cos(x)).
   [A001586, A000281, A000464]
egf3 = sec(3*x)*(sin(2*x) + cos(x)).
   [A007289, A000436, A000191]
egf4 = sec(4*x)*(sin(4*x) + 1).
   [A349264, A000490, A000318]
egf5 = sec(5*x)*(sin(x) + sin(3*x) + cos(2*x) + cos(4*x)).
   [A349265, A000187, A000320]
egf6 = sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)).
   [A001587, A000192, A000411]
egf7 = sec(7*x)*(-sin(2*x) + sin(4*x) + sin(6*x) + cos(x) + cos(3*x) - cos(5*x)).
   [A349266, A064068, A064072]
egf8 = sec(8*x)*2*(sin(4*x) + cos(4*x)).
   [A349267, A064069, A064073]
egf9 = sec(9*x)*(4*sin(3*x) + 2)*cos(3*x)^2.
   [A349268, A064070, A064074]
		

Crossrefs

Programs

  • Maple
    sec(4*x)*(sin(4*x) + 1): series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..19);
  • Mathematica
    m = 19; CoefficientList[Series[Sec[4*x] * (Sin[4*x] + 1), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 20 2021 *)
  • PARI
    seq(n)={my(x='x + O('x^(n+1))); Vec(serlaplace((sin(4*x) + 1)/cos(4*x)))} \\ Andrew Howroyd, Nov 20 2021

A064070 Generalized Euler number c(9,n).

Original entry on oeis.org

2, 126, 49410, 48649086, 89434106370, 264235243691646, 1145011717430672130, 6841110155700330881406, 53899295662946509072626690, 541439307193573593050370186366, 6754273504043546592593642328610050, 102439130403410639137159601119206854526
Offset: 0

Views

Author

Eric W. Weisstein, Aug 31 2001

Keywords

Crossrefs

Row 9 of A235605.

Programs

  • Maple
    egf := sec(9*x)*2*cos(3*x)^2: ser := series(egf, x, 24):
    seq((2*n)!*coeff(ser, x, 2*n), n = 0..10); # Peter Luschny, Nov 21 2021
  • Mathematica
    Range[0, 22, 2]! CoefficientList[Series[2 Sec[9 x] Cos[3 x]^2, {x, 0, 22}], x^2] (* Matthew House, Oct 27 2024 *)

Formula

a(n) = (2*n)!*[x^(2*n)](sec(9*x)*2*cos(3*x)^2). - Peter Luschny, Nov 21 2021

A349268 Generalized Euler numbers, a(n) = n!*[x^n](sec(9*x)*(4*sin(3*x) + 2)*cos(3*x)^2).

Original entry on oeis.org

2, 12, 126, 2160, 49410, 1415232, 48649086, 1951153920, 89434106370, 4611775398912, 264235243691646, 16653520425185280, 1145011717430672130, 85285640517460180992, 6841110155700330881406, 587950108643300554506240, 53899295662946509072626690, 5249943672359370392053481472
Offset: 0

Views

Author

Peter Luschny, Nov 21 2021

Keywords

Comments

For references and cross references, compare the overview in A349264.

Crossrefs

Row 9 of A349271.
Bisections: A064070, A064074.
Cf. A349264.

Programs

  • Maple
    sec(9*x)*(4*sin(3*x) + 2)*cos(3*x)^2: series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..17);
  • Mathematica
    m = 17; CoefficientList[Series[Sec[9*x] * (4 * Sin[3*x] + 2) * Cos[3*x]^2, {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 21 2021 *)
Showing 1-3 of 3 results.