A064080 Zsigmondy numbers for a = 4, b = 1: Zs(n, 4, 1) is the greatest divisor of 4^n - 1^n (A024036) that is relatively prime to 4^m - 1^m for all positive integers m < n.
3, 5, 7, 17, 341, 13, 5461, 257, 1387, 41, 1398101, 241, 22369621, 3277, 49981, 65537, 5726623061, 4033, 91625968981, 61681, 1826203, 838861, 23456248059221, 65281, 1100586419201, 13421773, 22906579627, 15790321, 96076792050570581
Offset: 1
Keywords
Links
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatshefte für Mathematik und Physik, 3 (1892) 265-284.
Formula
For even n, a(n) = A064078(2*n); for odd n, a(n) = A064078(n) * A064078(2*n). - Max Alekseyev, Apr 28 2022
Extensions
Corrected and extended by Vladeta Jovovic, Sep 05 2001
Definition corrected by Jerry Metzger, Nov 04 2009
Comments