cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064095 Row sums of triangle A064094.

Original entry on oeis.org

1, 2, 3, 5, 11, 34, 142, 753, 4826, 36028, 305133, 2879841, 29909422, 338479430, 4139716659, 54339861531, 761150445735, 11322139144240, 178116143657890, 2952831190016239, 51423702126549167, 938126972940647198, 17883424301972473340, 355435808475002747565, 7350551776003412371185
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Crossrefs

Cf. A064094.

Programs

  • Magma
    function A064094(n,k)
      if k eq 0 or k eq n then return 1;
      else return (&+[(n-k-j)*Binomial(n-k-1+j, j)*k^j: j in [0..n-k-1]])/(n-k);
      end if;
    end function;
    A064095:= func< n | (&+[A064094(n,k): k in [0..n]]) >;
    [A064095(n): n in [0..30]]; // G. C. Greubel, Sep 27 2024
    
  • Mathematica
    A064094[n_, k_]:= If[k==0 || k==n, 1, Sum[(n-k-j)*Binomial[n-k-1+j, j]*k^j, {j,0,n-k-1}]/(n-k) ];
    A064095[n_]:= Sum[A064094[n,k], {k,0,n}];
    Table[A064095[n], {n,0,30}] (* G. C. Greubel, Sep 27 2024 *)
  • PARI
    T(n, k)= if (n==k, 1, sum(i=0, n-k-1, (n-k-i)*binomial(n-k-1+i, i)*(k^i)/(n-k))); \\ A064094
    a(n) = sum(k=0, n, T(n,k));
    
  • SageMath
    def A064094(n,k):
        if (k==0 or k==n): return 1
        else: return sum((n-k-j)*binomial(n-k-1+j, j)*k^j for j in range(n-k))//(n-k)
    def A064095(n): return sum(A064094(n,k) for k in range(n+1))
    [A064095(n) for n in range(31)] # G. C. Greubel, Sep 27 2024

Extensions

More terms from Michel Marcus, Oct 28 2022