A064095 Row sums of triangle A064094.
1, 2, 3, 5, 11, 34, 142, 753, 4826, 36028, 305133, 2879841, 29909422, 338479430, 4139716659, 54339861531, 761150445735, 11322139144240, 178116143657890, 2952831190016239, 51423702126549167, 938126972940647198, 17883424301972473340, 355435808475002747565, 7350551776003412371185
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..475
Crossrefs
Cf. A064094.
Programs
-
Magma
function A064094(n,k) if k eq 0 or k eq n then return 1; else return (&+[(n-k-j)*Binomial(n-k-1+j, j)*k^j: j in [0..n-k-1]])/(n-k); end if; end function; A064095:= func< n | (&+[A064094(n,k): k in [0..n]]) >; [A064095(n): n in [0..30]]; // G. C. Greubel, Sep 27 2024
-
Mathematica
A064094[n_, k_]:= If[k==0 || k==n, 1, Sum[(n-k-j)*Binomial[n-k-1+j, j]*k^j, {j,0,n-k-1}]/(n-k) ]; A064095[n_]:= Sum[A064094[n,k], {k,0,n}]; Table[A064095[n], {n,0,30}] (* G. C. Greubel, Sep 27 2024 *)
-
PARI
T(n, k)= if (n==k, 1, sum(i=0, n-k-1, (n-k-i)*binomial(n-k-1+i, i)*(k^i)/(n-k))); \\ A064094 a(n) = sum(k=0, n, T(n,k));
-
SageMath
def A064094(n,k): if (k==0 or k==n): return 1 else: return sum((n-k-j)*binomial(n-k-1+j, j)*k^j for j in range(n-k))//(n-k) def A064095(n): return sum(A064094(n,k) for k in range(n+1)) [A064095(n) for n in range(31)] # G. C. Greubel, Sep 27 2024
Extensions
More terms from Michel Marcus, Oct 28 2022