cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064096 Fifth diagonal of triangle A064094.

Original entry on oeis.org

1, 14, 67, 190, 413, 766, 1279, 1982, 2905, 4078, 5531, 7294, 9397, 11870, 14743, 18046, 21809, 26062, 30835, 36158, 42061, 48574, 55727, 63550, 72073, 81326, 91339, 102142, 113765, 126238, 139591, 153854, 169057, 185230, 202403, 220606, 239869, 260222, 281695, 304318, 328121, 353134, 379387, 406910
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Crossrefs

Cf. A001844 (fourth diagonal), A009766, A064094.

Programs

  • Magma
    [(n+1)^3 +2*n^2*(2*n+1): n in [0..50]]; // G. C. Greubel, Nov 07 2024
    
  • Mathematica
    CoefficientList[Series[(1 + 2*x)*(1 + 8*x + x^2)/(1 - x)^4, {x, 0, 50}], x] (* Wesley Ivan Hurt, Nov 17 2022 *)
  • SageMath
    def A064096(n): return (n+1)^3 +2*n^2*(2*n+1)
    [A064096(n) for n in range(51)] # G. C. Greubel, Nov 07 2024

Formula

a(n) = 1+3*n+5*n^2+5*n^3. Fourth row polynomial (n=3) of Catalan triangle A009766.
G.f.: (1+2*x)*(1+8*x+x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Nov 17 2022
E.g.f.: (1 + 13*x + 20*x^2 + 5*x^3)*exp(x). - G. C. Greubel, Nov 07 2024

Extensions

More terms added by G. C. Greubel, Nov 07 2024