A064096 Fifth diagonal of triangle A064094.
1, 14, 67, 190, 413, 766, 1279, 1982, 2905, 4078, 5531, 7294, 9397, 11870, 14743, 18046, 21809, 26062, 30835, 36158, 42061, 48574, 55727, 63550, 72073, 81326, 91339, 102142, 113765, 126238, 139591, 153854, 169057, 185230, 202403, 220606, 239869, 260222, 281695, 304318, 328121, 353134, 379387, 406910
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[(n+1)^3 +2*n^2*(2*n+1): n in [0..50]]; // G. C. Greubel, Nov 07 2024
-
Mathematica
CoefficientList[Series[(1 + 2*x)*(1 + 8*x + x^2)/(1 - x)^4, {x, 0, 50}], x] (* Wesley Ivan Hurt, Nov 17 2022 *)
-
SageMath
def A064096(n): return (n+1)^3 +2*n^2*(2*n+1) [A064096(n) for n in range(51)] # G. C. Greubel, Nov 07 2024
Formula
a(n) = 1+3*n+5*n^2+5*n^3. Fourth row polynomial (n=3) of Catalan triangle A009766.
G.f.: (1+2*x)*(1+8*x+x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Nov 17 2022
E.g.f.: (1 + 13*x + 20*x^2 + 5*x^3)*exp(x). - G. C. Greubel, Nov 07 2024
Extensions
More terms added by G. C. Greubel, Nov 07 2024