cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064111 Numbers k such that sopf(k) + 1 = sopf(k+1), where sopf(k) = A008472(k).

Original entry on oeis.org

2, 8, 120, 168, 175, 247, 860, 1044, 1444, 1659, 1849, 3626, 3834, 4233, 4300, 4345, 4814, 6867, 8240, 14905, 23287, 24476, 28919, 29087, 29464, 30457, 30650, 33725, 34945, 35585, 37214, 49468, 52206, 54900, 58113, 62049, 63440, 65631, 68264
Offset: 1

Views

Author

Jason Earls, Sep 08 2001

Keywords

Comments

Also k such that z(k) = z(k+1) where z(k) = k - sopf(k).
Prime factors counted without multiplicity. - Harvey P. Dale, Dec 26 2015

Examples

			sopf(8) + 1 = 3, sopf(8 + 1) = 3.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Partition[Table[Total[Transpose[FactorInteger[n]] [[1]]], {n, 2,70000}],2,1],?(#[[1]]+1==#[[2]]&),{1},Heads->False]]+1 (* _Harvey P. Dale, Dec 26 2015 *)
  • PARI
    sopf(n,s,fac,i)=fac=factor(n); for(i=1,matsize(fac)[1],s=s+fac[i,1]); return(s);
    j=[]; for(n=1,100000, if(sopf(n)+1==sopf(n+1), j=concat(j,n))); j
    
  • PARI
    z(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(n - s) }
    { n=0; zm=z(1); for (m=1, 10^9, zp=z(m + 1); if (zm==zp, write("b064111.txt", n++, " ", m); if (n==1000, break)); zm=zp ) } \\ Harry J. Smith, Sep 07 2009