cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064152 Erdős primes: primes p such that all p-k! for 1 <= k! < p are composite.

Original entry on oeis.org

2, 101, 211, 367, 409, 419, 461, 557, 673, 709, 769, 937, 967, 1009, 1201, 1259, 1709, 1831, 1889, 2141, 2221, 2309, 2351, 2411, 2437, 2539, 2647, 2837, 2879, 3011, 3019, 3041, 3049, 3079, 3163, 3217, 3221, 3359, 3389, 3499, 3593, 3671, 3709, 3833, 3851
Offset: 1

Views

Author

Felice Russo, Sep 13 2001

Keywords

Comments

Numbers of Erdős primes <= 10^j for j = 1,2,3, ... are 1, 1, 13, 95, 901, 7875, 71140, 646242, 5901409, ... For large j the asymptotic law seems to be #E(10^j) ~ (1/8)*(10^j/(j*log(10))). If so the sequence is infinite.

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section A2, p. 11.

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{k = 1}, While[k! < n && ! PrimeQ[n - k!], k++]; k! >= n]; Select[Prime[Range[550]], q] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    { n=0; for (m=1, 10^9, p=prime(m); k=f=b=1; while ((f*=k) < p, if (isprime(p-f), b=0; break); k++); if (b, write("b064152.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 09 2009